

High Accuracy Power Analysis.
Anywhere, Anytime.

High Accuracy and Mobility. A New Value for Power Analysis.

The first-generation Power Analyzer 3390 debuted in 2009 with a collection of the latest measurement technologies packed into a compact design.

Pair with Hioki current sensors and take them anywhere to immediately make highly accurate measurements.

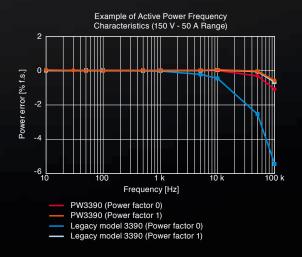
This was the unique value of the 3390.

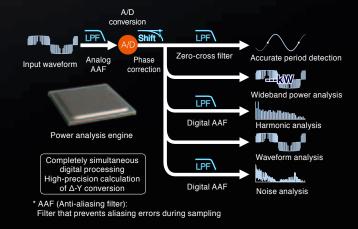
Now, Hioki has enhanced this value while refining the measurement technology even further.

Proper accuracy and bandwidth to precisely measure inverter output.

Phase shift function for the exact measurement of high frequency, low power factor power.

A broad current sensor lineup that expands the range of measurement possibilities.


Refinements that empower you to conduct precise power analysis in any situation.


Complete Pursuit of Measurement Accuracy and High Frequency Characteristics

The PW3390 delivers 4 input channels and ±0.04% basic accuracy for power - the top instrument in its class. Achieve more precise measurements of the power and efficiency of high efficiency equipment used in power electronics. Further, a 200 kHz measurement band and flat amplitude and phase characteristics up to high frequencies enable the precise measurement of power at top frequency levels and low power factor

Power Analysis Engine That Achieves High-Speed Simultaneous Calculation on 5 Systems

Precisely capture input waveforms with 500 kS/s high-speed sampling and a high resolution 16-bit A/D converter. The power analysis engine performs independent digital processing for 5 systems: period detection, wideband power analysis, harmonic analysis, waveform analysis, and noise analysis. High-speed simultaneous calculation processing enables both precise measurements and a 50 ms data refresh rate.

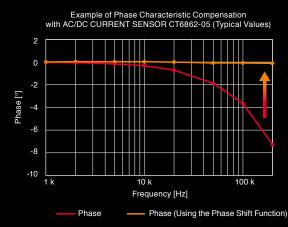
Current Sensors for the Thorough Pursuit of High Accuracy. Achieve Superior Accuracy for High-Frequency, Low Power Factor Power.

High Accuracy Pass-Through Sensor

Pass-through sensors deliver accuracy, broad-band performance, and stability. Measure currents of up to 1000 A with a high degree of accuracy across a broad range of operating temperatures.

High Accuracy Clamp Sensor

Clamp for quick and easy connections. Conduct extremely accurate measurements of large currents to a maximum of 1000 A over a wide operating temperature range.


Newly developed DCCT method delivers expansive measurement range and superior measurement accuracy at a rating of 50 A.

Built-in Current Sensor Phase Shift Function

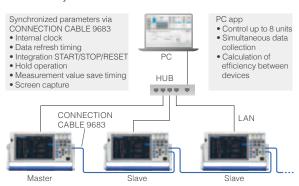
Equipped with new virtual oversampling technology. Achieve phase shift equivalent to 200 MS/s while maintaining a high speed of 500 kS/s, as well as a high resolution of 16 bits. Set and correct the phase error of the current sensor at a resolution of 0.01°. Use of the phase shift function results in a dramatic reduction of measurement error. This allows the measurement of high-frequency, low-power factor power included in the switching frequency of inverter output, which is difficult to measure with conventional equipment.

*Virtual oversampling: Technology that uses a sampling frequency several hundred times higher than the actual sampling frequency to perform virtual deskewing

In the Laboratory or in the Field

Take Highly Accurate Measurements Even in Tough Temperature Conditions

Severe temperature environments, such as engine rooms with intense temperature changes and constant temperature rooms, can hinder high accuracy measurements. The extremely accurate pass-through and clamp type sensors both feature excellent temperature characteristics and a wide operation temperature range to help address these challenges.


Max. 6000 A Measurement on 50 Hz/60 Hz Lines

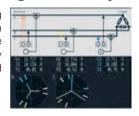
The CT7040 AC FLEXIBLE CURRENT SENSOR series can measure commercial power lines up to 6000 A, including solar power conditioner output. Even thick cables can be wired easily among crowded wiring or in narrow locations.

Acquire Data from up to 8 Synchronized Units (32 Channels)

When you connect CONNECTION CABLE 9683 to multiple PW3390 units, the control signals and internal clocks synchronize. From the master unit, you can control the measurement timing on the PW3390 units that are set as slaves. With interval measurement, you can save synchronized measurement data to a CF card or a PC to achieve simultaneous measurements across a larger number of systems.

Achieve High Accuracy Measurement Even in the Field

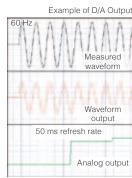
Dramatically compact and light-weight form factor achieved by concentrating the calculation functions in the power analysis engine. Highly accurate measurements normally achieved in the laboratory are now also possible in the field.


External Power Supply Not Needed for Sensor Connections

Power can be supplied to the current sensor from the main unit, so there is no need to provide a separate external power supply for the current sensor. Connected sensors are recognized automatically, for reliable and quick measurements.

Wiring Displays and Quick Setup Lets You Begin Measuring Immediately

Perform wiring while checking wiring diagrams and vectors on the screen. Optimum settings are performed automatically simply by selecting a connection and using the quick setup function.


Extensive Interface for Linking with External Devices

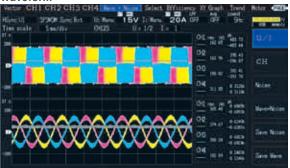
Wide variety of built-in interfaces, including LAN, USB (communication, memory), CF cards, RS-232C, synchronization control, and external control.

D/A output* delivers analog output at 50 ms for up to 16 parameters. The voltage and current waveform** for each channel can also be output.

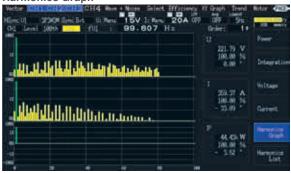
- Built-in for PW3390-02 and PW3390-03
- ** During waveform output, accurate reproduction is possible at an output of 500 kS/s and with a sine wave up to 20 kHz.

Switch Screens with a Single Touch, Accessing a Variety of Power Analysis Methods

The power analysis engine allows the simultaneous, parallel calculation of all parameters. Access a variety of analysis methods simply by pressing the page keys to switch screens.


Page Keys

Vector


Confirm the voltage/current/power/phase angle for each harmonic order on a vector graph and as numerical values

Waveform

voltage/current waveforms for 4 channels at a high speed of 500 kS/s or a maximum length of 5 seconds. Waveform data can be saved.

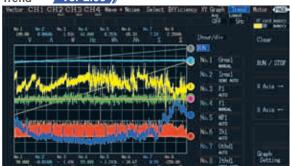
Harmonics Graph

Display harmonics up to the 100th order for voltage/current/power in bar graphs. Confirm the numerical data for the selected order at the same time.

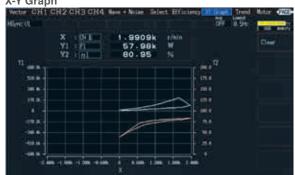
Efficiency and Loss

Using active power values and motor power values, confirm efficiency η [%] and loss [W] and total efficiency for each inverter/motor on a single unit at the same time. confirm efficiency $\boldsymbol{\eta}$ [%] and

Selection Display

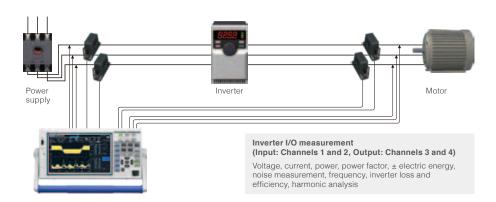


Select 4/8/16/32 display parameters individually for each screen, and


Display FFT results for voltage and current as graphs and numerical values, up to a maximum of 200 kHz. This is perfect for the frequency analysis of inverter noise.

Ver 2.00 // **Trend**

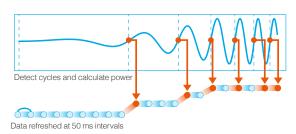
Choose up to eight measurement parameters and display a graph of their variations over time. You can also save a screenshot of the graph.


X-Y Graph

Create inverter characteristic evaluations and motor torque maps. Select the desired parameter to display an X-Y plot graph.

Applications

Measure the Power Conversion Efficiency of Inverters

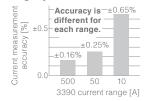


Key features

- 1. Isolated input of voltage and current on each of 4 channels for simultaneous measurement of the primary and secondary power of inverters
- Simultaneous measurement of all important parameters for secondary analysis of inverters, such as RMS value, MEAN value, and fundamental
- Easy wiring with current sensors. Reliable confirmation of wiring with vector diagrams
- Current sensors reduce effects of common mode noise from inverters during power measurement
- Simultaneous measurement of noise components, in addition to the harmonic analysis required for the measurement of inverter control

Highly Accurate and Fast 50 ms **Calculation of Power in Transient State**

Measure power transient states, including motor operations such as starting and accelerating, at 50 ms refresh rates. Automatically measure and keep up with power with fluctuating frequencies, from a minimum of 0.5 Hz.



Automatic detection of fundamental wave even if the frequency fluctuates, from low to high frequencies

Combined Accuracy of Current Sensors Applicable throughout Entire Range

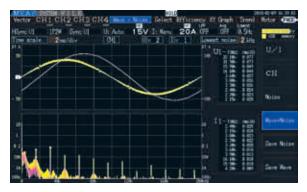
Combined accuracy throughout the entire range is provided through the use of a built-to-order high accuracy pass-through type current sensor. Obtain highly accurate measurements regardless of range, from large to minute currents, even for loads that fluctuate greatly.

Legacy Model 3390

Combination of 3390 and 9709

(500 A rating)
Total Accuracy when measuring currency of 45 to 66 Hz and f.s. for each range

Model PW3390

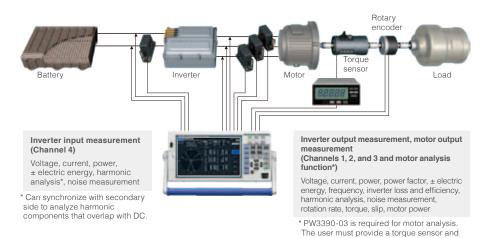


Combination of PW3390 and the high accuracy 9709-05* (500 A rating, built-to-order) Total accuracy when measuring currency of 45 to 66 Hz and f.s. for

each range


Evaluate high-frequency noise / Ver 2.00 // from an inverter

The enhanced noise analysis functionality provided by Version 2.00 of the instrument's firmware lets you perform frequency analysis of noise components from DC to 200 kHz, display and automatically save the top 10 points, and manually save the FFT spectrum. This functionality is an effective tool for evaluating conductive noise from 2 kHz to 150 kHz generated by inverters and switching power supplies.


Visually assess temporal fluctuations in efficiency

The trend display lets you graph user-selected measurement parameters such as efficiency and frequency over periods of time ranging from dozens of seconds to half a month. This capability makes it possible to visually assess fluctuations, including of transient states in which measured values fluctuate abruptly and steady states in which they exhibit minuscule fluctuations. Graphs can be saved as screenshots, and values can be automatically saved.

^{*} High-accuracy specifications are not defined for the built-to-order high accuracy current sensor when used alone.

Analyze and Measure EV/HEV Inverter Motors

Key features

- Easy wiring and highly accurate measurements with the use of a pass-through type current sensor
- Simultaneous measurement of all important parameters for secondary analysis of inverters, such as RMS value, MEAN value, and fundamental components
- 3. 0.5 Hz to 5 kHz harmonic analysis without external clock
- Total measurement of inverter motors with built-in motor analysis function
- Measurement of the voltage, torque, rotation rate, frequency, slip, and motor power required for motor analysis with a single unit
- More precise measurements of electrical angle with incremental type encoders

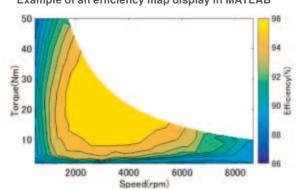
Electric Angle Measurement of Motors (PW3390-03 only)

-03 only) **Ver 2.00** //

The PW3390-03 features a built-in electric angle measurement function required for vector control via dq coordinate systems in high-efficiency synchronized motors. Make real-time measurements of phase angles for voltage and current fundamental wave components based on encoder pulses. Further, zero-adjustment of the phase angle when induced voltage occurs allows electric angle measurement based on the inductive voltage phase. Version 2.00 of the firmware introduces the ability to display and manually set phase zero-adjustment values, making it possible to measure electrical angle using a user-selected zero-adjustment value. Electric angle can also be used as an Ld and Lq calculation parameter for synchronized motors.

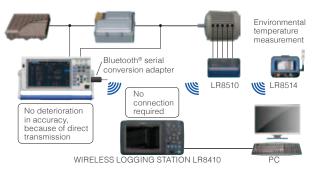
rotation sensor

Display motor electric angles on the vector screen

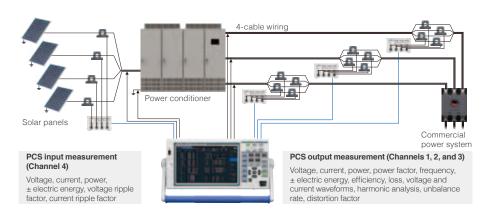

CH A: 145.26 N·m CH B: 1.8950k r/min Pm : 28.83k w Slip: 4.79 x

Motor analysis screen (Torque, rotation rate, motor power, slip) For CH B, enter the Z-phase pulse of the encoder to measure electric angle, and enter the B-phase pulse to measure rotation direction.

Evaluate inverter motor efficiency and loss


Evaluate efficiency and loss for an inverter, motor, and overall system by simultaneously measuring the inverter's input and output power and the motor's output. You can also create an efficiency map or loss map in MATLAB using measurement results recorded by the PW3390 at each operating point.*MATLAB is a registered trademark of Mathworks. Inc.

Example of an efficiency map display in MATLAB


Transfer to Data Logger via Bluetooth® wireless technology

Connect the PW3390 and a data logger (with support of LR8410 Link) via Bluetooth® wireless technology to wirelessly transmit 8 parameters of measurement values from the PW3390 to the data logger. In addition to the voltage, temperature, humidity, and other parameters measured by the multichannel data logger, you can also integrate the measurement values of the PW3390 and observe and record them in real time.

^{*} Connection requires the serial - (Bluetooth® wireless technology) conversion adapter and power supply adapter recommended by Hioki. Please inquire with your Hioki distributor.

Measure the Efficiency of PV Power Conditioners (PCS)

Key features

- 4 built-in channels, standard. Simultaneously measure the I/O characteristics of power conditioners.
- Current sensors can measure even large currents with high accuracy. Reliable confirmation of wiring with vector diagrams.
- Measure the amount of power sold/ purchased from power conditioner output on interconnected systems with a single unit.
- DC mode integration function, which responds quickly to input fluctuations such as with solar power, built in.
- Measure ripple factor, efficiency, loss, and all other parameters that are required for the measurement of power conditioners for solar power with a single unit.

HIOKI's Current Measurement Solutions for Large Currents of 1000 A or More

Introducing a lineup of sensors taking measurements up to 6000 A for 50 Hz/60 Hz, and up to 2000 A for direct current. The CT9557 SENSOR UNIT lets you add the output waveforms from multiple high accuracy sensors. Use multi-cable wiring lines to take highly accurate measurements of up to 4000 A.

			Blue: High accuracy sensor	Black: Normal sensors
Recommended current sensor by measurement target		DC power	System power 50 Hz/60 Hz	Inverter secondary power
1000 A or less		CT6865-05 or CT6846-05		
2000 A or less	1-cable wiring	CT7742	CT7642	-
	2-cable wiring	CT9557 + CT6865-05 x 2 or CT9557 + CT6846-05 x 2		
4000 A or less	Less than 4-cable wiring	-	CT7044/CT7045/CT7046	-
	4-cable wiring	CT9557 + CT6865-05 x 4 or CT9557 + CT6846		846-05 x 4
6000 A or less		-	CT7044/CT7045/CT7046	-

CT6865-05 (AC/DC 1000 A)
Pass-through type; Wideband, high accuracy

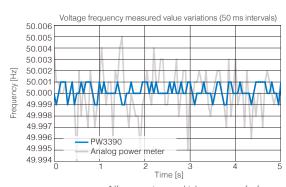
CT6846-05 (AC/DC 1000 A) Easy-connect clamp type

CT9557 Add waveforms from multiple current sensors

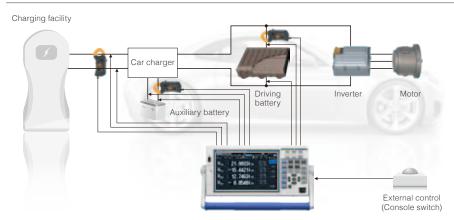
CT7742 (AC/DC 2000 A)
Stable measurement of DC without zero

CT7642 (AC/DC 2000 A) Wider frequency characteristics than the CT7742

CT7044/ CT7045/ CT7046 (AC 6000 A) Flexible, for easy connections even in narrow gaps


Support for PCS Parameters

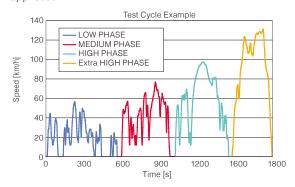
Simultaneously display the parameters required for PCS, such as efficiency, loss, DC ripple factor, and 3-phase unbalance rate. Easily check the required measured items for improved test efficiency. By matching the measurement synchronization source for both input and output, you can perform DC power measurements that are synchronized with the output AC as well as stable efficiency measurements.


±0.01 Hz^{*} Basic Accuracy for Voltage Frequency Measurements

Perform the frequency measurements that are required for various PCS tests with industry-leading accuracy and stability. Take highly accurate frequency measurements on up to 4 channels simultaneously, while also measuring other parameters at the same time.

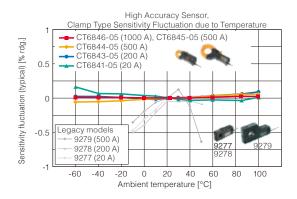
* If you require even higher accuracy for frequency, please inquire with your local Hioki distributor.

Test Automobile Fuel Economy

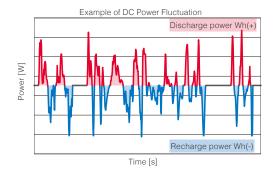


Key features

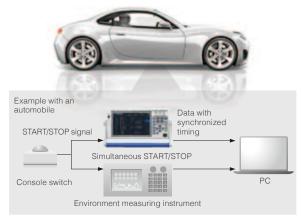
- Accurately measure recharge and discharge power with excellent basic accuracy and DC accuracy.
- 4 built-in channels, standard. Support for multiple recharge and discharge measurements, including auxiliary batteries.
- Easily achieve highly accurate measurements with clamp sensors, which can be used in a wide range of operating temperatures.
- Easily link with other measuring instruments through integration control with an external control interface.


Evaluate WLTC Mode Performance - A New Fuel Economy Standard

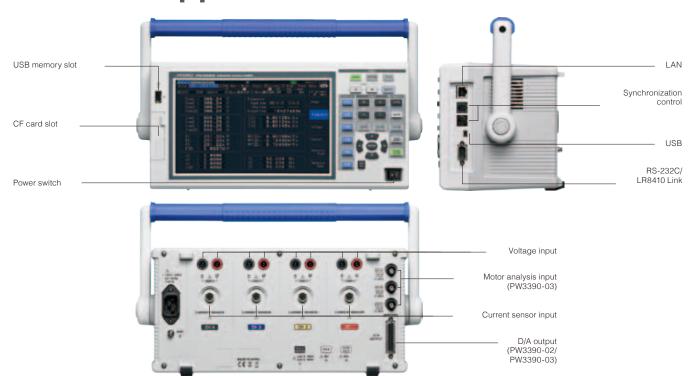
Taking fuel economy measurements that comply with WLTP international standards requires the precise measurement of current integration and power integration for the recharging/discharging of each battery in the system. High accuracy clamp current sensors, the excellent DC accuracy of the PW3390, and the ability to integrate current and power at 50 ms intervals are extremely effective in meeting this application.


Optimal Current Sensors for Automotive Testing

Easily connect high accuracy clamp-type sensors without cutting the cables. Sensors operate over a temperature range of -40°C to 85°C (-40°F to 185°F), characteristics that enable highly accurate measurements even inside the engine room of a car.


Current and Power Integration Function by Polarity

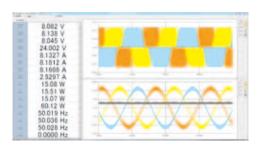
DC integration measurement integrates the recharging power and discharging power by polarity for every sample at 500 kS/s, and measures positive-direction power magnitude, negative-direction power magnitude, and the sum of positive- and negative-direction power magnitude during the integration period. Accurate measurement of recharging power and discharging power is possible even if there is rapid repetition of battery recharging/discharging.



Link to Peripheral Devices via External Control

Use external control terminals to START/STOP integration and capture screen shots. This makes it easy to control operations from console switches and link to the timing of other instruments when measuring the performance of an actual automobile.

External Appearance



Software

Download software, drivers, and the Communications Command Instruction Manual from the Hioki website. https://www.hioki.com

"PW Communicator" PC Communication Software

PW Communicator is an application program for communicating between a PW3390 series power analyzer and a PC. Use the program to quickly and easily control the PW3390 and collect measurement data on a PC.

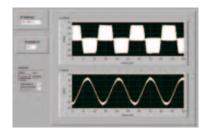
Numerical value monitoring
Waveform monitoring
Meter setting

Display the PW3390's measurement values on the PC screen. You can freely select up to 32 values, such as voltage, current, power, and harmonics.

Monitor the measured voltage, current, and waveforms on the PC screen. Waveform data can be saved as an image or CSV file.

Change the settings of the connected PW3390 from the PC screen.

In addition to the PW3390, it is also possible to perform batch control of up to 8 devices from the HIOKI PW6001 Power Analyzer and the PW3335, PW3336, and PW3337 Power Meter series. You can also simultaneously record measured data to the PC, and perform efficiency calculations for measuring instruments. SIN, SUM, and other arithmetic operations can be used to perform complex calculations.


Record in CSV format Record measured data to a CSV file at regular time intervals. The minimum recording interval is 50 ms

Download files Download files from the PW3390's media (CF card or USB memory stick) to a PC.

Supported operating systems Windows 10/Windows 8/Windows 7 (32-bit/64-bit) *Windows is a registered trademark of Microsoft in the U.S.

LabVIEW driver

Use the bundled LabVIEW driver to build a measurement system via a simple programming interface that lets you place icons on a window and connect them with lines. Multiple sample programs for configuring settings and downloading data are available, so you can get started right away.

*LabVIEW is a registered trademark of National Instruments.

Remote control using an web browser

Use the PW3390's HTTP server function to connect to a computer via a LAN interface. You can configure settings or check data from a remote location using a virtual control panel that is displayed in the browser window.

Specifications

Basic Specifications

Accuracy guaranteed for 6 months (and 1.25 times specified accuracy for one year)
Post-adjustment accuracy guaranteed for: 6 months

Measurement line type	Single-phase 2-v (3P3W2M, 3P3W			e (1F3VV), 3-pile	ise 3-wire
	(OT OVVZIVI, OT OVV	CH1	CH2	CH3	CH4
	Pattern 1	1P2W	1P2W	1P2W	1P2W
	Pattern 2		P3W	1P2W	1P2W
	Pattern 3 Pattern 4		BW2M P3W	1P2W	1P2W 3W
	Pattern 5		BW2M		3W
	Pattern 6		BW2M		W2M
	Pattern 7		3P3W3M		1P2W
	Pattern 8		3P4W		1P2W
Number of input channels	Voltage: 4 chann Current: 4 chann	els I1 to I4			
Measurement input terminal type	Voltage: Plug-in jacks (safety jacks) Current: Dedicated custom connectors (ME15W)				
Input methods	Voltage: Isolated inputs, resistive dividers Current: Insulated current sensors (voltage output)				
Voltage range	15 V/30 V/60 V/19 (Selectable for e		0 V/1500 V I wiring system. A	UTO range avai	lable.)
Current range	2 A/4 A/8 A/20 A 0.4 A/0.8 A/2 A/4	A/8 A/20 A			9272-05, 20 CT6841-05)
(): Sensor used	4 A/8 A/20 A/40	A/80 A/200 A	0.1.4	(200 A s	ensor)
	40 A/80 A/200 A 0.1 A/0.2 A/0.5 A	/1 A/2 A/5 A	∠ KA	(2000 A (5 A sen	
	1 A/2 A/5 A/10 A 10 A/20 A/50 A/1	/20 A/50 A	00 A	(50 A se	nsor)
	20 A/40 A/100 A/	200 A/400 A/		(1000 A	sensor)
	400 A/800 A/2 k/ 400 A/800 A/2 k/				and CT7742 , CT7045,
	400 A/800 A/2 k/	1 /4 ls A /0 ls A /0) kA	and CT7	046)
	40 A/80 A/200 A	/400 A/800 A/	2 kA	(1 mV/A	
	4 A/8 A/20 A/40 A 0.4 A/0.8 A/2 A/4	A/80 A/200 A			A sensor) (A sensor)
			wiring system. Al		
Power range	Determined auto and measuremer 1.5000 W to 90.0	nt line.	e combination of	voltage range, c	urrent range,
Crest factor			ive voltage/currer nge rating) (for 15		
Input resistance (50 Hz/60 Hz)	Voltage input sect Current sensor in		: 2 MΩ ±40 kΩ (di : 1 MΩ ±50 kΩ	fferential input an	d insulated inp
Maximum input voltage	Voltage input section : 1500 V, ±2000 Vpeak Current sensor input section : 5 V, ±10 Vpeak				
Maximum rated voltage to earth	Voltage input terminal 1000 V (50 Hz/60 Hz) Measurement categories III 600 V (anticipated transient overvoltage 6000 V) Measurement categories II 1000 V (anticipated transient overvoltage 6000 V)				
Measurement method	Simultaneous digital sampling of voltage and current, simultaneous zero-crossing calculation method				
Sampling	500 kHz/16 bit				
Measurement frequency range	DC, 0.5 Hz to 200) kHz			
Synchronization frequency range	0.5 Hz to 5 kHz Selectable lower l	imit measuren	nent frequency (0.5	5 Hz/1 Hz/2 Hz/5	Hz/10 Hz/20 H
Synchronization source	U1 to U4, I1 to I4, Ext (with the motor evaluation installed model and CH B set fo pulse input), DC (50 ms or 100 ms fixed) Selectable for each measurement channel (U/I for each channel measured using the same synchronization source) The zero-crossing filter automatically matches the digital LPF when U or I is selecte Two filter levels (strong or mild) Operation and accuracy are undetermined when the zero-crossing filter is disabled (or Operation and accuracy are determined when U or I is selected and measured imput is 30% f.s. or above.				
Data update interval	50 ms				
LPF	OFF/500 Hz/5 kHz/100 kHz (selectable for each wiring system) 500 Hz: Accuracy defined at 60 Hz or below (Add ±0.1% f.s.) 5 kHz: Accuracy defined at 500 Hz or below 100 kHz: Accuracy defined at 500 Hz or below (Add 1% rdg. at or above 10 kH				
Zero-crossing filter	Off, mild or stron	-	O NI IZ OI DEIOW (A	iuu i /o iuy. al 01	above to KH.
Polarity discrimination			iming comparisor	n method	
	Zero-crossing filt				
Basic measurement parameters	Frequency, RMS voltage, voltage mean value rectification RMS equivalent, voltage AC component, voltage simple average, voltage fundamental wave component, voltage wareform peak -, voltage wareform peak -, voltage total harmonic distorition voltage ripple factor, voltage unbalance factor, RMS current, current mean value rectification RMS equivalent, current AC component, current simple average, curre fundamental wave component, current waveform peak -, current total harmonic distortion, current ripple factor, current unbalance factor, active power, apparent power, reactive power, power factor, voltage phase angle current phase angle, positive-direction current magnitude, sum of positive-direction current magnitude, sum of positive-direction power magnitude, sum of positive-direction power magnitude, sum of positive-direction power magnitude, egative-direction power magnitude, sum of positive-direction power magnitude, egative-direction power magnit				
Malanada	(PW3390-03) Motor torque, rpn				
Voltage/current rectification method	Select which volt reactive power, a RMS/MEAN (volt	nd power fact	nt values to use for		parent and
		age and curre	iii iii eacii piiase	ayatem)	

DC $0.5 \text{ Hz} \le f < 30 \text{ Hz}$ $30 \text{ Hz} \le f < 45 \text{ Hz}$ $45 \text{ Hz} \le f \le 66 \text{ Hz}$				
30 Hz ≤ f < 45 Hz 45 Hz ≤ f ≤ 66 Hz	±0.05% rdg. ±0.07% f.s	. ±0.05% rdg. ±0.07% f.s		
45 Hz ≤ f ≤ 66 Hz	±0.05% rdg. ±0.1% f.s.	±0.05% rdg. ±0.1% f.s.		
	±0.05% rdg. ±0.1% f.s.	±0.05% rdg. ±0.1% f.s.		
	±0.04% rdg. ±0.05% f.s	-		
66 Hz < f ≤ 1 kHz	±0.1% rdg. ±0.1% f.s.	±0.1% rdg. ±0.1% f.s.		
1 kHz < f ≤ 10 kHz 10 kHz < f ≤ 50 kHz	±0.2% rdg. ±0.1% f.s. ±0.3% rdg. ±0.2% f.s.	±0.2% rdg. ±0.1% f.s. ±0.3% rdg. ±0.2% f.s.		
50 kHz < f ≤ 100 kH.		±1.0% rdg. ±0.3% f.s.		
100 kHz < f ≤ 200 kl		±20% f.s.		
	Active power (P)	Phase difference		
DC	±0.05% rdg. ±0.07% f.s			
0.5 Hz ≤ f < 30 Hz	±0.05% rdg. ±0.1% f.s.	±0.08°		
30 Hz ≤ f < 45 Hz	±0.05% rdg. ±0.1% f.s.	±0.08°		
45 Hz ≤ f ≤ 66 Hz	±0.04% rdg. ±0.05% f.s	. ±0.08°		
66 Hz < f ≤ 1 kHz	±0.1% rdg. ±0.1% f.s.	±0.08°		
		±(0.06*f+0.02)°		
		±0.62°		
		±(0.005*f+0.4)° ±(0.022*f-1.3)°		
Values of f in above tables are given in kHz.				
Accuracy figures for DC voltage and current are defined for Udc and Idc, while accuracy				
power factor of zero at	nd the LPF disabled.			
Accuracy figures for vo	oltage and active power values	in excess of 220 V in the		
frequency range of 30	kHz to 100 kHz are provided as	reference values.		
Accuracy figures for vo	oltage and active power values			
		the frequency range of 45 Hz		
to 66 Hz are provided	as reference values.			
		he phase difference accuracy		
500 Hz < f ≤ 5 kHz:±0.3° 5 kHz < f ≤ 20 kHz:±0.5°				
20 kHz < f ≤ 200 kHz:±1°				
Add ±20 μV to the DC current and active power accuracy (at 2 V f.s.)				
Add the current sensor accuracy to the above accuracy figures for current, active				
power, and phase difference. However, the combined accuracy is defined separately for the current				
measurement options listed below.				
When used with current measurement options PW9100-03 or PW9100-04,				
	Current (I)	Active power (P)		
DC	±0.07% rdg. ±0.077% f.s.	±0.07% rdg. ±0.077% f.s.		
45 Hz ≤ f ≤ 66 Hz	±0.06% rdg. ±0.055% f.s.	±0.06% rdg. ±0.055% f.s.		
Add ±0.12% f.s. (f.s. = F	PW3390 range) when using 1 A c	or 2 A range.		
When used with any of the following current measurement options: special-order				
high-accuracy 9709-05, high-accuracy CT6862-05, or high-accuracy CT6863-				
05, combined accura				
		Active power (P)		
		±0.095% rdg. ±0.08% f.s		
45 HZ ≤ T ≤ 66 HZ	±0.085% rag. ±0.06% f.S.	±0.085% rdg. ±0.06% f.s		
	nidity for guaranteed accuracy	: 23°C ±3°C (/3°F ±5°F),		
Warm-up time: 30 min. or more				
Input: Within the specified ranges when the fundamental wave is synchronized with the sync source, for sine wave input, power factor of one, or DC input,				
zero ground voltage, within effective measurement range after zero-				
adjustment and within the range in which the fundamental wave satisfies				
the synchronization source conditions				
	t ±0.01% f.s./°C (for DC, add ±0.01% f.s./°C) te ±0.01% f.s. or less (with 1000 V @50 Hz/60 Hz applied between voltage			
±0.01% f.s./°C (for DC ±0.01% f.s. or less (wit				
±0.01% f.s./°C (for DC ±0.01% f.s. or less (wit measurement jacks ar	nd chassis)	d between voltage		
±0.01% f.s./°C (for DC ±0.01% f.s. or less (wit measurement jacks ar		d between voltage		
$\pm 0.01\%$ f.s./°C (for DC $\pm 0.01\%$ f.s. or less (wit measurement jacks ar $\pm 1\%$ f.s. or less (in 40 Other than $\phi = \pm 90^\circ$:	d chassis) 0 A/m magnetic field, DC and ±(1-cos (φ+Phase difference a	d between voltage 50 Hz/60 Hz) accuracy/cos(φ)) ×100% rd,		
$\pm 0.01\%$ f.s./°C (for DC $\pm 0.01\%$ f.s. or less (wit measurement jacks ar $\pm 1\%$ f.s. or less (in 40 Other than $\varphi = \pm 90^\circ$: $\pm 0.01\%$ When $\varphi = \pm 90^\circ$: $\pm 0.01\%$	d chassis) 0 A/m magnetic field, DC and ±(1-cos (φ+Phase difference a (φ+Phase difference accurace	d between voltage 50 Hz/60 Hz) accuracy)/cos(ф)) ×100% rdi y) ×100% f.s.		
$\pm 0.01\%$ f.s./°C (for DC $\pm 0.01\%$ f.s. or less (wit measurement jacks ar $\pm 1\%$ f.s. or less (in 40 Other than $\varphi = \pm 90^\circ$: $\pm 0.00\%$ When $\varphi = \pm 90^\circ$: $\pm 0.00\%$ W, current and ac	d chassis) 0 A/m magnetic field, DC and ±(1-cos (φ+Phase difference a	d between voltage 50 Hz/60 Hz) accuracy)/cos(φ)) ×100% rds y) ×100% f.s.		
$\pm 0.01\%$ f.s./°C (for DC $\pm 0.01\%$ f.s. or less (wit measurement jacks ar $\pm 1\%$ f.s. or less (in 40 Other than $\phi = \pm 90^\circ$: $\pm \cos 3$ V, current and ac where f.s. current is tif.s. active power eque	id chassis) 0 A/m magnetic field, DC and ±(1-cos (φ+Phase difference α (φ+Phase difference accurace tive power not more than ±6%	d between voltage 50 Hz/60 Hz) accuracy)/cos(φ)) ×100% rdi y) ×100% f.s. f.s., f the current sensor		
±0.01% f.s. J°C (for DC ±0.01% f.s. or less (with measurement jacks ar ±1% f.s. or less (in 40 Other than φ = ±90°: ±0.08 When φ = ±0.00 (as V, current and ac where f.s. current is t.s. active power equacurrent sensor	Id chassis) 0 A/m magnetic field, DC and ±(1-cos (φ+Phase difference e (φ+Phase difference accuractive power not more than ±6% he rated primary-side current alls the voltage range × the rate	d between voltage 50 Hz/60 Hz) accuracy)/cos(ф)) ×100% rd; y) ×100% f.s. f.s., of the current sensor ed primary-side current of th		
±0.01% f.s. J°C (for DC ±0.01% f.s. or less (with measurement jacks ar ±1% f.s. or less (in 40 Other than φ = ±90°: ±cos @3 V, current and ac where f.s. current is the f.s. active power equicurrent sensor @10 V/m, current and the where f.s. current is the first sensor first se	Id chassis) 0 A/m magnetic field, DC and ±(1-cos (φ+Phase difference accurace (φ+Phase difference accurace tive power not more than ±6% he rated primary-side current als the voltage range x the rate I active power not more than ± he rated primary-side current	d between voltage 50 Hz/60 Hz) accuracy)/cos(Φ)) ×100% rd y) ×100% f.s. f.s., of the current sensor d primary-side current of the		
±0.01% f.s. j. °C (for DC ±0.01% f.s. or less (with gasks ar ±1% f.s. or less (in 40 Other than φ = ±90°: ±0.06 %3 V, current and ac where f.s. current is the f.s. active power equal current sense. © 10 V/m, current and where f.s. current is the f.s. active power equal current sense.	d chassis) 0 A/m magnetic field, DC and ±(1-cos (φ+Phase difference α (φ+Phase difference accurac tive power not more than ±6% he rated primary-side current als the voltage range × the rate d active power not more than ±	d between voltage 50 Hz/60 Hz) accuracy)/cos(Φ)) ×100% rd, y) ×100% f.s. f.s., of the current sensor ad primary-side current of th		
\pm 0.01% f.s. $J^{\infty}C$ (for DC \pm 0.01% f.s. or less (with eneasurement jacks ar \pm 1% f.s. or less (in 40 Other than $\Phi = \pm 90^{\circ}$: \pm 00% \pm 00% (are the period of the	d chassis) 0 A/m magnetic field, DC and ±(1-cos (φ+Phase difference α (φ+Phase difference accurac tive power not more than ±6% he rated primary-side current als the voltage range × the rate d active power not more than ± he rated primary-side current als the voltage range × the rate	d between voltage 50 Hz/60 Hz) accuracy)/cos(Φ)) ×100% rd y) ×100% f.s. f.s., of the current sensor d primary-side current of the		
±0.01% f.s. j. °C (for DC ±0.01% f.s. or less (with 20.01% f.s. or less (in 40.01% f.s. or less (in 40	d chassis) 0 A/m magnetic field, DC and ±(1-cos (\$\phi\$+Phase difference a (\$\phi\$+Phase difference accurace tive power not more than ±6% he rated primary-side current als the voltage range x the rate of active power not more than ±6% he rated primary-side current als the voltage range x the rate of the	d between voltage 50 Hz/60 Hz) accuracy)/cos(φ)) ×100% rd; y) ×100% f.s. f.s. of the current sensor d primary-side current of the current sensor d primary-side current of the		
±0.01% f.s./°C (for DC ±0.01% f.s. or less (with measurement jacks ar ±1% f.s. or less (in 40 Other than φ = ±90°: ±cos @3 V, current and ac where f.s. current is tf.s. active power equicurrent sensor where f.s. current is tf.s. active power equicurrent sensor voltage, Current, Pow Voltage, Current, Pow Voltage, Current, Pow Voltage, Current, Pow	Id chassis) 0 A/m magnetic field, DC and ±(1-cos (\$\phi\$+Phase difference at (\$\phi\$+Phase difference accurace (\$\phi\$+Phase difference accurace tive power not more than ±6% the rated primary-side current als the voltage range × the rate d active power not more than ± the rated primary-side current als the voltage range × the rate ver: 1% to 110% of the range ver: 1% to 110% of the range	d between voltage 50 Hz/60 Hz) accuracy)/cos(φ)) ×100% rd; y) ×100% f.s. f.s. of the current sensor d primary-side current of the current sensor d primary-side current of the		
±0.01% f.s./°C (for DC ±0.01% f.s. or less (with each standard sta	Id chassis) 0 A/m magnetic field, DC and ±(1-cos (φ+Phase difference i- (φ+Phase difference accurace tive power not more than ±6% he rated primary-side current als the voltage range × the rate of active power not more than ± he rated primary-side current als the voltage range × the rate ver: 1% to 110% of the range ver: from zero-suppression ran or 0.5% f.s.	d between voltage 50 Hz/60 Hz) accuracy)/cos(ф)) ×100% rd; y) ×100% f.s. f.s., of the current sensor ad primary-side current of th 6% f.s., of the current sensor ad primary-side current of th		
±0.01% f.s./°C (for DC ±0.01% f.s. or less (with case) f.s. or less (with the case) f.s. or less (in 40 Other than φ = ±90°: ±00s @3 V, current and ac where f.s. current is tf.s. active power equicurrent sensor voltage, Current, Pow Selectable OFF, 0.1 c.	d chassis) 0 A/m magnetic field, DC and ±(1-cos (φ+Phase difference a: (φ+Phase difference accuractive power not more than ±6% he rated primary-side current rails the voltage range x the rate of active power not more than and rated primary-side current rails the voltage range x the rate ver: 1% to 110% of the range ver: from zero-suppression rar or 0.5% f.s. values may be displayed evernent compensation of internal	d between voltage 50 Hz/60 Hz) accuracy)/cos(φ)) ×100% rd, y) ×100% f.s. f.s., of the current sensor d primary-side current of the current sensor d primary-side current of the inge setting to 120% I with no measurement inpu offset at or below ±10% f.s.		
±0.01% f.s./°C (for DC ±0.01% f.s. or less (with the case of the c	Id chassis) 0 A/m magnetic field, DC and ±(1-cos (φ+Phase difference accuracy (φ+Phase difference accuracy tive power not more than ±6% he rated primary-side current als the voltage range × the rate d active power not more than ± he rated primary-side current als the voltage range × the rate ver: 1% to 110% of the range ver: from zero-suppression rar or 0.5% f.s. values may be displayed ever nent compensation of input offise ent compensation of internal ent compensation of internal	d between voltage 50 Hz/60 Hz) accuracy)/cos(φ)) ×100% rd, y) ×100% f.s. f.s., of the current sensor d primary-side current of the current sensor d primary-side current of the inge setting to 120% I with no measurement inpu offset at or below ±10% f.s.		
±0.01% f.s./°C (for DC ±0.01% f.s. or less (with the case of the c	d chassis) 0 A/m magnetic field, DC and ±(1-cos (φ+Phase difference a: (φ+Phase difference accuractive power not more than ±6% he rated primary-side current rails the voltage range x the rate of active power not more than and rated primary-side current rails the voltage range x the rate ver: 1% to 110% of the range ver: from zero-suppression rar or 0.5% f.s. values may be displayed evernent compensation of internal	d between voltage 50 Hz/60 Hz) accuracy)/cos(φ)) ×100% rd, y) ×100% f.s. f.s., of the current sensor d primary-side current of the current sensor d primary-side current of the inge setting to 120% I with no measurement inpu offset at or below ±10% f.s.		
±0.01% f.s. J.°C (for DC ±0.01% f.s. or less (with case) f.s. or less (in 40 Other than φ = ±90°: ±0.08 (in 40 Other than φ = ±0.08 (in 40	Id chassis) 0 A/m magnetic field, DC and ±(1-cos (φ+Phase difference accuracy (φ+Phase difference accuracy tive power not more than ±6% he rated primary-side current als the voltage range × the rate d active power not more than ± he rated primary-side current als the voltage range × the rate ver: 1% to 110% of the range ver: from zero-suppression rar or 0.5% f.s. values may be displayed ever nent compensation of input offise ent compensation of internal ent compensation of internal	d between voltage 50 Hz/60 Hz) accuracy)/cos(φ)) ×100% rd, y) ×100% f.s. f.s., of the current sensor ad primary-side current of th control the current sensor ad primary-side current of th inge setting to 120% a with no measurement inpu offset at or below ±10% f.s. ±4 m\ tat or below ±10% f.s. ±4 m\		
±0.01% f.s. J.°C (for DC ±0.01% f.s. or less (with case) f.s. or less (in 40 Other than φ = ±90°: ±0.08 (in 40 Other than φ = ±0.08 (in 40	d chassis) 0 A/m magnetic field, DC and ±(1-cos (φ+Phase difference a: (φ+Phase difference accuractive power not more than ±6% he rated primary-side current als the voltage range x the rate d active power not more than ±1 active power not more than ±1 active power not more than ±2 he rated primary-side current als the voltage range x the rate ver: 1% to 110% of the range ver: from zero-suppression rar or 0.5% f.s. values may be displayed ever nent compensation of internal ent compensation of input offse in voltage and current range.	d between voltage 50 Hz/60 Hz) accuracy)/cos(φ)) ×100% rd, y) ×100% f.s. f.s., of the current sensor ad primary-side current of th control the current sensor ad primary-side current of th inge setting to 120% a with no measurement inpu offset at or below ±10% f.s. ±4 m\ tat or below ±10% f.s. ±4 m\		
±0.01% f.s. J.°C (for DC ±0.01% f.s. or less (with case) f.s. or less (in 40 Other than φ = ±90°: ±0.08 (in 40 Other than φ = ±0.08 (in 40	Id chassis) 0 A/m magnetic field, DC and ±(1-cos (φ+Phase difference accuracy) (φ+Phase differ	d between voltage 50 Hz/60 Hz) accuracy)/cos(φ)) ×100% rd, y) ×100% f.s. f.s., of the current sensor ad primary-side current of th control the current sensor ad primary-side current of th inge setting to 120% a with no measurement inpu offset at or below ±10% f.s. ±4 m\ tat or below ±10% f.s. ±4 m\		
±0.01% f.s.j°C (for DC ±0.01% f.s. or less (wit ±0.01% f.s. or less (wit ±1% f.s. or less (in 40 Other than φ = ±90°: ±00s @3 V, current and ac where f.s. current is t f.s. active power equa current sensor @10 V/m, current and where f.s. current is t f.s. active power equa current sensor Voltage, Current, Pov Voltage, Current, Pov Selectable OFF, 0.1 c When OFF, non-zero Voltage; Current, Pov Coltage; Current, Pov Woltage, Current, P	Id chassis) 0 A/m magnetic field, DC and ±(1-cos (φ+Phase difference accuracy) (φ+Phase differ	d between voltage 50 Hz/60 Hz) accuracy)/cos(φ)) ×100% rd, y) ×100% f.s. f.s., of the current sensor ad primary-side current of th control the current sensor ad primary-side current of th inge setting to 120% a with no measurement inpu offset at or below ±10% f.s. ±4 m\ tat or below ±10% f.s. ±4 m\		
±0.01% f.s.j°C (for DC ±0.01% f.s. or less (with ±0.01% f.s. or less (with ±1% f.s. or less (in 40 Other than φ = ±90°: ±0.00 @3 V, current and ac where f.s. current is the static power equal current sensor @10 V/m, current and where f.s. current is the sactive power equal current sensor Voltage, Current, Pov Voltage, Current, Pov Selectable OFF, 0.1 c When OFF, non-zero Voltage, Tourrent, Pov Coltage, Current, Pov Woltage, Current, Pov Well Selectable OFF, 0.1 c When OFF, non-zero Voltage, Current, Pov Selectable OFF, 0.1 c When OFF, non-zero Voltage, Current, Pov Selectable OFF, 0.1 c When OFF, non-zero Voltage, Current, Pov Selectable OFF, 0.1 c When OFF, non-zero Voltage, Current, Pov Selectable OFF, 0.1 c When OFF, non-zero Voltage, Current, Pov Selectable OFF, 0.1 c When OFF, non-zero Voltage, Current, Pov Selectable OFF, 0.1 c When OFF, non-zero Voltage, Current, Pov Selectable OFF, 0.1 c When OFF, non-zero Voltage, Current, Pov Selectable OFF, 0.1 c When OFF, non-zero Voltage, Current, Pov Selectable OFF, 0.1 c When OFF, non-zero Voltage, Current, Pov Selectable OFF, 0.1 c When OFF, non-zero Voltage, Current, Pov Selectable OFF, 0.1 c When OFF, non-zero Voltage, Current, Pov Selectable OFF, 0.1 c	Id chassis) 0 A/m magnetic field, DC and ±(1-cos (Φ+Phase difference e. (Φ+Phase difference accurac tive power not more than ±6% he rated primary-side current als the voltage range × the rate of active power not more than ±1 active power not more than ±2 active power than ±2 active power in ±2 active than ±2 active power in ±2 active power	d between voltage 50 Hz/60 Hz) accuracy)/cos(φ)) ×100% rd, y) ×100% f.s. f.s., of the current sensor ad primary-side current of th control the current sensor ad primary-side current of th inge setting to 120% a with no measurement inpu offset at or below ±10% f.s. ±4 m\ tat or below ±10% f.s. ±4 m\		
±0.01% f.s.j.°C (for DC ±0.01% f.s. or less (with ±0.01% f.s. or less (with ±0.1% f.s. or less (in 40 Other than φ = ±90°: When φ = ±90°: ±000 33 V, current and ac where f.s. current is ti f.s. active power equi- current sensor 10 V/m, current and where f.s. current is ti f.s. active power equi- current sensor Voltage, Current, Pow Selectable OFF, 0.1 c When OFF, non-zero Voltage: Zero-adjustr Within ±300% of eacl Within ±2% f.s. of vol Surement Specific Four (f1 to f4) Select U/I for each m Reciprocal method +	Id chassis) 0 A/m magnetic field, DC and ±(1-cos (φ+Phase difference at (φ+Phase difference accurace (φ+Phase difference accurace tive power not more than ±6% he rated primary-side current als the voltage range x the rate of the rated primary-side current als the voltage range x the rate of the rated primary-side current als the voltage range x the rate over: 1% to 110% of the range over: 1% to 110% of the range over: from zero-suppression range of 0.5% f.s. values may be displayed ever nent compensation of input office in voltage and current range tage and current display accurate the compensation of input office in voltage and current display accurate the compensation of input office in voltage and current display accurate the compensation of input office in voltage and current display accurate the compensation of input office in voltage and current display accurate the compensation of input office in voltage and current display accurate the compensation of input office in voltage and current display accurate the compensation of input office in voltage and current display accurate the compensation of input office in voltage and current display accurate the compensation of input office in voltage and current display accurate the compensation of input office in voltage and current display accurate the compensation of input office in voltage and current display accurate the compensation of input office in voltage and current display accurate the compensation of input office in voltage accurate the current display accurate the	d between voltage 50 Hz/60 Hz) accuracy)/cos(φ)) ×100% rd, y) ×100% f.s. f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th unity of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current advantage sew.f.s., of the current sensor advantage sew.f.s., of the current se		
±0.01% f.s./°C (for DC ±0.01% f.s. or less (with ±0.01% f.s. or less (with ±1% f.s. or less (in 40 Other than φ = ±90°: ±00s @3 V, current and ac where f.s. current is ti f.s. active power equal current sensor @10 V/m, current and where f.s. current is ti f.s. active power equal current sensor Voltage, Current, Pov Voltage, Current, Pov Selectable OFF, 0.1 c When OFF, non-zero Voltage; Zero-adjustm Within ±300% of eacl Within ±2% f.s. of vol surremt. Specific Four (f1 to f4) Select U/I for each m Reciprocal method + Synchronous range from	Id chassis) 0 A/m magnetic field, DC and ±(1-cos (φ+Phase difference accuracy) (φ+Phase differ	d between voltage 50 Hz/60 Hz) accuracy)/cos(φ)) ×100% rd, y) ×100% f.s. f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th unity of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current of th sew.f.s., of the current sensor ad primary-side current advantage sew.f.s., of the current sensor advantage sew.f.s., of the current se		
±0.01% f.s.j.°C (for DC ±0.01% f.s. or less (with ±0.01% f.s. or less (with ±0.1% f.s. or less (in 40 Other than φ = ±90°: When φ = ±90°: ±000 33 V, current and ac where f.s. current is ti f.s. active power equi- current sensor 10 V/m, current and where f.s. current is ti f.s. active power equi- current sensor Voltage, Current, Pow Selectable OFF, 0.1 c When OFF, non-zero Voltage: Zero-adjustr Within ±300% of eacl Within ±2% f.s. of vol Surement Specific Four (f1 to f4) Select U/I for each m Reciprocal method +	Id chassis) 0 A/m magnetic field, DC and ±(1-cos (φ+Phase difference accuracy) (φ+Phase differ	d between voltage 50 Hz/60 Hz) accuracy)/cos(φ)) ×100% rd y) ×100% f.s. f.s., of the current sensor ad primary-side current inpu offset at or below ±10% f.s. ±4 mN current sensor accurrent sensor ad primary-side current of the current sensor accurrent sensor accurrent sensor accurrent sensor accurrent sensor accurrent sensor ad primary-side current of the current sensor ad primary-side current sensor ad primary-side current sensor ad primary-side current of the current sensor ad primary-side current sensor ad prima		
±0.01% f.s.j.°C (for DC ±0.01% f.s. or less (with ±0.01% f.s. or less (with ±0.11% f.s. or less (in 40 Other than φ = ±90°: ±000 Other than φ = ±90°: ±000 Gay V, current and ac where f.s. current is ti f.s. active power equa current sensor 10 V/m, current and ac where f.s. current is ti f.s. active power equa current sensor Voltage, Current, Pow Voltage, Current, Pow Selectable OFF, 0.1 c When OFF, non-zero Voltage: Zero-adjustr Within ±300% of eacl Within ±2% f.s. of vol Surrement Specific Four (f1 to f4) Surrement Specific Select U/I for each m Reciprocal method + Synchronous range fron 0.5 Hz/1 Hz/2 Hz/5 H	Id chassis) 0 A/m magnetic field, DC and ±(1-cos (φ+Phase difference a:	d between voltage 50 Hz/60 Hz) accuracy)/cos(φ)) ×100% rd, y) ×100% f.s. f.s., of the current sensor ad primary-side current of th 6% f.s., of the current sensor ad primary-side current of th 10% f.s., of the current sensor ad primary-side current sens		
±0.01% f.s.j°C (for Do ±0.01% f.s. or less (with ±0.01% f.s. or less (with ±0.11% f.s. or less (in 40 Other than φ = ±90°: ±0.00 Other than φ = ±90°: ±0.00 @3 V, current and ac @3 V, current is the station of the station @10 V/m, current and where f.s. current is the station @10 V/m, current and where f.s. current is the station @10 V/m, current and where f.s. current is the station @10 V/m, current and where f.s. current is the station @10 V/m, current and where f.s. current is the station @10 V/m, current and where f.s. current is the station @10 V/m, current and where f.s. current is the station @10 V/m, c	Id chassis) 0 A/m magnetic field, DC and ±(1-cos (φ+Phase difference accuracy) (φ+Phase differ	d between voltage 50 Hz/60 Hz) accuracy)/cos(Φ)) ×100% rd; y) ×100% f.s. f.s., of the current sensor ad primary-side current of th 6% f.s., of the current sensor ad primary-side current of th or the current sensor ad primary-side current of th or the current sensor ad primary-side current of th and the current sensor ad primary-side current of th or the current sensor ad primary-side current of th or the current sensor ad primary-side current of th or the current sensor ad primary-side current of th or the current sensor and the current sensor ad primary-side current of the or the current sensor and primary-side current sensor and primary-		
±0.01% f.s.j°C (for DC ±0.01% f.s. or less (with ±0.01% f.s. or less (with ±0.11% f.s. or less (in 40 Other than φ = ±90°: ±000 Other than φ = ±90°: ±000 Gay V, current and ac where f.s. current is the state of the state f.s. active power equi- current sensor (10 V/m, current and ac where f.s. current is the state of the state f.s. active power equi- current sensor Voltage, Current, Pow Selectable OFF, 0.1 c When OFF, non-zero Voltage: Zero-adjustr Within ±300% of eacl Within ±300% of eacl Within ±2% f.s. of vol Surement Specific Four (f1 to f4) Select U/I for each m Reciprocal method + Synchronous range fron 0.5 Hz/1 Hz/2 Hz/5 H 50 ms (measurement ±0.01 Hz (during voltag ±0.05% rdg., ±1 dgt. (u	Id chassis) 0 A/m magnetic field, DC and ±(1-cos (φ+Phase difference a:	d between voltage 50 Hz/60 Hz) accuracy)/cos(φ)) ×100% rd; y) ×100% f.s. f.s., of the current sensor ad primary-side current of th set f.s., of the current sensor ad primary-side current of th set f.s., of the current sensor ad primary-side current of th set f.s., of the current sensor ad primary-side current of th set f.s., of the current sensor ad primary-side current of th set f.s., of the current sensor ad primary-side current of th set f.s., of the current sensor ad primary-side current of th set f.s., of the current sensor ad primary-side current of th set f.s., of the current sensor ad primary-side current of th set f.s., of the current sensor ad primary-side current of th set f.s., of the current sensor ad primary-side current of th set f.s., of the current sensor ad primary-side current of th set f.s., of the current sensor ad primary-side current of th set f.s., of the current sensor ad primary-side current of th set f.s., of the current sensor ad primary-side current of th set f.s., of the current sensor ad primary-side current of th set f.s., of the current sensor ad primary-side current of th set f.s., of the current sensor ad primary-side current of th set f.s., of the current sensor ad primary-side current of th set f.s., of the current sensor ad primary-side current of the current		
	45 Hz ≤ f ≤ 66 Hz 66	30 Hz ≤ f < 45 Hz \pm 0.05% rdg. ±0.1% f.s. 45 Hz ≤ f ≤ 66 Hz \pm 0.04% rdg. ±0.05% f.s 66 Hz < f ≤ 1 kHz \pm 0.04% rdg. ±0.1% f.s. 1 kHz < f ≤ 10 kHz \pm 0.2% rdg. ±0.1% f.s. 1 lkHz < f ≤ 10 kHz \pm 0.2% rdg. ±0.1% f.s. 50 kHz < f ≤ 100 kHz \pm 0.2% rdg. ±0.1% f.s. 1 lx 40 kHz \pm 0.2% rdg. ±0.1% f.s. 1 lx 5% rdg. ±0.5% f.s. 1 lx 6 kHz < f ≤ 200 kHz \pm 1.5% rdg. ±0.5% f.s. 1 lx 6 kHz < f ≤ 200 kHz \pm 1.5% rdg. ±0.5% f.s. 1 lx 6 kHz < f ≤ 200 kHz \pm 1.5% rdg. ±0.5% f.s. 1 lx 6 kHz = f ≤ 200 kHz \pm 1.5% rdg. ±0.5% f.s. 1 lx 6 kHz = f ≤ 200 kHz \pm 1.5% rdg. ±0.5% f.s. 1 lx 6 kHz = f ≤ 200 kHz \pm 1.5% rdg. ±0.5% f.s. 1 lx 6 kHz = f ≤ 200 kHz \pm 1.5% rdg. ±0.5% f.s. 1 lx 6 kHz = f ≤ 200 kHz = f ≤ 66 Hz = f ≤ 6		

-3. Integration Measurement Specifications

Measurement mode	Selectable between RMS or DC for each wiring mode
Measurement items	Current integration (lh+, lh-, and lh), active power integration (WP+, WP-, and WP) lh+ and lh- only for DC mode measurements, and lh only for RMS mode measurements
Measurement method	Digital calculation from each current and active power phase (when averaging, calculates with previous average value) In DC mode: calculates current value at every sample, and integrates instantaneous power independent of polarity In RMS mode: Integrates current effective values between measurement intervals, and polarity-independent active power value
Measurement interval	50 ms data update interval
Measuring range	Integration value: 0 Ah/Wh to ±9999.99 TAh/TWh Integration time: No greater than 9999h59m
Integration time accuracy	±50 ppm ±1 dgt. (0°C to 40°C (32°F to 104°F))
Integration accuracy	± (current and active power accuracy) ± integration time accuracy
Backup function	Integration automatically resumes after power outages.

-4. Harmonic Meas	urement Specificatio	ns		
Number of measurement channels	4 channels Harmonic measurements not available for multiple systems with different frequencies			
Measurement items	Harmonic rms voltage, harmonic voltage percentage, harmonic voltage phase angle, harmonic rms current, harmonic current percentage, harmonic current phase angle, harmonic active power, harmonic power percentage, harmonic voltage-current phase difference, total harmonic voltage distortion, total harmonic current distortion, voltage unbalance factor.			
Measurement method	Zero-crossing synchronous calculation (all channels in same window), with gap Fixed 500 kS/s sampling, after digital anti-aliasing filter Equal thinning between zero crossings (with interpolation calculation)			
Harmonic sync source	U1 to U4, I1 to I4, External (with motor analysis and CH B set for pulse input), DC selectable (50 ms or 100 ms)			
FFT calculation word length	32 bits			
Anti-aliasing filter	Digital filter (automatically	set based on syn	chronization freque	ency)
Windows	Rectangular			
Synchronization frequency range	As specified for power measurements			
Data update interval	50 ms (measurement-frequent	uency-dependent	at 45 Hz and below	N)
Phase zero adjustment	Provided by key operation or external control command (only with external sync source) Automatic or manual configuration of phase zero-adjustment values Phase zero-adjustment setting range: 0.00° to ±180.00° (in 0.01° increments)			
THD calculation	THD-F/THD-R			
Highest order analysis and window waveforms	Synchronization frequency range	Window waveforms	Analysis order	
	0.5 Hz ≤ f < 40 Hz	1	100th	1
	40 Hz ≤ f < 80 Hz	1	100th	1
	80 Hz ≤ f < 160 Hz	2	80th	1
	160 Hz ≤ f < 320 Hz	4	40th	
	320 Hz ≤ f < 640 Hz	8	20th	1
	640 Hz ≤ f < 1.2 kHz	16	10th	
	1.2 kHz ≤ f < 2.5 kHz	32	5th	
	2.5 kHz ≤ f < 5.0 kHz	64	3th	
Accuracy	Frequency	equency Voltage(U), Current(I), Active Power(P)		
	0.5 Hz ≤ f < 30 Hz	±0.4% rdg. ±0.2% f.s.		
	30 Hz ≤ f ≤ 400 Hz	±0.3% rdg. ±0	±0.3% rdg. ±0.1% f.s.	
	400 Hz < f ≤ 1 kHz	±0.4% rdg. ±0).2% f.s.	
	1 kHz < f ≤ 5 kHz ±1.0% rdg. ±0.5% f.s.			
	5 kHz ~ f ~ 10 kHz	.2.00/ rdg .1	00/ f o	

Not specified for sync frequencies of 4.3 kHz and higher Add the LPF accuracy to the above when using LPF. -5. Noise Measurement Specifications

1 kHz < f ≤ 5 kHz 5 kHz < f ≤ 10 kHz

10 kHz < f ≤ 13 kHz

Calculation channels	1 (Select one from CH1 to CH4)
Calculation items	Voltage noise/Current noise
Calculation type	RMS spectrum
Calculation method	Fixed 500 kS/s sampling, thinning after digital anti-aliasing filter
FFT calculation word length	32 bits
FFT data points	1000/5000/10,000/50,000 (according to displayed waveform recording length)
Anti-aliasing filter	Automatic digital filter (varies with maximum analysis frequency)
Windows	Rectangular/Hanning/flat-top
Data update interval	Determined by FFT points within approx. 400 ms, 1 s, 2 s, or 15 s, with gap
Highest analysis frequency	200 kHz/50 kHz/20 kHz/10 kHz/5 kHz/2 kHz
Frequency resolution	0.2 Hz to 500 Hz (Determined by FFT points and maximum analysis frequency)
Noise amplitude	Calculates the ten highest level and frequency voltage and current FFT peak
measurement	values (local maxima).
Lower limit noise frequency	0 kHz to 10 kHz

±2.0% rdg. ±1.0% f.s.

±5.0% rdg. ±1.0% f.s.

-6. Motor Analysis Specifications (Model PW3390-03)

Number of input channels	3 channels CH A: Analog DC input/Frequency input (selectable) CH B: Analog DC input/Pulse input (selectable)
Management inner	CH Z: Pulse input Insulated BNC jacks
Measurement input terminal type	Illisulated BNO Jacks
Input impedance (DC)	1 MΩ ±100 kΩ
Input methods	Isolated and differential inputs (not isolated between channels B and Z)
Measurement items	Voltage, torque, rotation rate, frequency, slip, and motor power
Synchronization source	U1 to U4, I1 to I4, Ext (with CH B set for pulse input), DC (50 ms/100 ms) Common to channels A and B
Measurement frequency source	f1 to f4 (for slip calculations)
Maximum input voltage	±20 V (during analog, frequency, and pulse input)
Maximum rated voltage to earth	50 V (50 Hz/60 Hz)

(1). Analog DC Input (CH A/CH B)

· · · ·	
Measurement range	±1 V, ±5 V, ±10 V (when inputting analog DC)
Valid input range	1% to 110% f.s.
Sampling	10 kHz/16 bits
Response time	1 ms (measuring zero to full scale, with LPF off)
Measurement method	Simultaneous digital sampling and zero-crossing synchronous calculation system (cumulative average of intervals between zero crossings)
Measurement accuracy	±0.08% rdg. ±0.1% f.s.
Temperature coefficient	±0.03% f.s./°C
	Not more than ±0.01% f.s. (with 50 V [DC or 50 Hz/60 Hz] between measurement jacks and PW3390 chassis)

Effect of external magnetic field	Not more than ±0.1% f.s. (at 400 A/m DC and 50 Hz/60 Hz magnetic fields)	
LPF	OFF/ON (OFF: 4 kHz, ON: 1 kHz)	
Total display area	Zero-suppression range setting ±120%	
Zero adjustment	Zero-corrected input offset of voltage ±10% f.s. or less	
Scaling	0.01 ~ 9999.99	
Unit	CH A: V, N _* m, mN _* m, kN _* m, CH B: V, Hz, r/min	
(2). Frequency Inpu	ut (CH A only)	
Valid amplitude range	±5 V peak (5 V symmetrical, equivalent to RS-422 complementary signal)	
Max. measurement frequency	100 kHz	
Measurement range	1 kHz to 100 kHz	
Data output interval	According to synchronization source	
Measurement accuracy	±0.05% rdg., ±3 dgt.	
Total display area	1.000 kHz to 99.999 kHz	
Frequency range	Select fc and fd for frequency range fc \pm fd [Hz] (frequency measurement only) 1 kHz to 98 kHz in 1 kHz units, where fc $+$ fd $<$ 100 kHz and fc $-$ fd $>$ 1 kHz	
Rated torque	1 ~ 999	

Hz, N• m, mN• m, kN• m Unit (3). Pulse Input (CH B only)

Rated torque

(3). Pulse iliput (On B offiy)				
Detection level	Low: 0.5 V or less; High: 2.0 V or more			
Measurement range	1 Hz to 200 kHz (at 50% duty)			
Division setting range	1 ~ 60000			
Measurement frequency range	0.5 Hz to 5.0 kHz (limited to measured pulse frequency divided by selected no. of divisions)			
Minimum detectable pulse width	2.5 µs or more			
Measurement accuracy	±0.05% rdg., ±3 dgt.			
Motor poles	2~98			
Max. measurement frequency	100 Hz, 500 Hz, 1 kHz, 5 kHz			
Pulse count	Integer multiple of half the number of motor poles, from 1 to 60,000			
Unit	Hz, r/min			

(4). Pulse Input (CH Z only)

Detection level	Low: 0.5 V or less; High: 2.0 V or more
Measurement range	0.1 Hz to 200 kHz (at 50% duty)
Minimum detectable pulse width	2.5 µs or more
	OFF/Z Phase/B Phase (clear counts of CHB in rising edge during Z Phase, detect polar code for number of rotations during B Phase)

-7. D/A Output Option Specifications (Models PW3390-02 and PW3390-03)

Number of output channels	16 channels
Output contents	CH1 to CH8: Selectable analog/waveform outputs CH9 to CH16: Analog output
Output items	Analog output: Select a basic measurement item for each output channel. Waveform output: Output voltage or current measured waveforms.
Output connector	One 25-pin female D-sub
D/A conversion resolution	16 bits (polarity + 15 bits)
Output accuracy	Analog output: Measurement accuracy ±0.2% f.s. (DC level) Waveform output: Measurement accuracy ±0.5% f.s. (at ±2 V f.s.), ±1.0% f.s. (at ±1 V f.s.) (rms level within synchronous frequency range)
Output update interval	Analog output: 50 ms (according to input data update interval of selected parameter) Waveform output: 500 kHz
Output voltage	Analog output: ±5 V DC nom. (approx. ±12 V DC max.) Waveform output: ±2 V/±1 V switchable, crest factor of 2.5 or greater Setting applies to all channels.
Output impedance	100 Ω ±5 Ω
Temperature coefficient	±0.05% f.s./°C

-8. Display Specifications

Display type	9-inch TFT color LCD (800×480 dots)
Display refresh interval	Measurement values: 200 ms (independent of internal data update interval)
	Waveforms, FFT: screen-dependent

-9. External Interface Specifications

(1). USB Interface (Functions)

Connector	Mini-B receptacle ×1
Compliance standard	USB2.0 (Full Speed/High Speed)
Class	Individual (USB488h)
Connection destination	Computer (Windows10/Windows8/Windows7, 32bit/64bit)
Function	Data transfer and command control

(2). USB Memory Interface

Connector	USB type A connector ×1
Compliance standard	USB2.0
USB power supply	500 mA maximum
USB storage device support	USB Mass Storage Class
Function	Save and load settings files, Save waveform data Save displayed measurement values (CSV format) Copy measurement values and recorded data (from CF card) Save waveform data Save FFT spectrum for noise measurement Save/load screenshots

(3). LAN Interface

Connector	RJ-45 connector x 1
Compliance standard	IEEE 802.3 compliant
Transmission method	10BASE-T/100BASE-TX Auto detected
Protocol	TCP/IP
Function	HTTP server (remote operation). Dedicated port (data transfer and command control)

(4). CF Card Interface

Slot	One Type 1
Compatible card	CompactFlash memory card (32 MB or higher)
Supported memory capacity	Up to 2 GB
Data format	MS-DOS format (FAT16/FAT32)
Recordable content	Save and load settings files, Save waveform data Save displayed measurement values and auto-recorded data (CSV format) Copy measurements/recorded data (from USB storage) Save waveform data Save FFT spectrum for noise waveforms Save/Boad Screenshots

(5). RS-232C Interface

Method	RS-232C, [EIA RS-232D], [CCITT V.24], [JIS X5101] compliant Full duplex, start-stop synchronization, 8-bit data, no parity, one stop bit Hardware flow control, CR+LF delimiter	
Connector	D-sub9 pin connector ×1	
Communication speeds	9600 bps, 19,200 bps, 38,400 bps	
Function	Command control, Bluetooth® logger connectivity (simultaneous use not supported)	
(6). Synchronization	n Control Interface	
Signal contents	One-second clock, integration START/STOP, DATA RESET, EVENT	
Connector types	IN: One 9-pin female mini-DIN jack, OUT: One 8-pin female mini-DIN jack	
Signal	5 V CMOS	
Max. input ±20 V		
Max. signal delay 2 μs (rising edge)		
(7). External Contro	ol Interface	
Connector types	9-pin round connector ×1; also used as synchronization control interface	
Electrical specifications Logic signal of 0 V/5 V (2.5 V to 5 V), or contact signal (shorted/open)		
Function	Integration start, integration stop, data reset, event (the event set as the synchronization control function) Cannot be used at the same time as synchronization control.	

Function Specifications

-1. Control Functions

AUTO range function	Automatically selects voltage and current ranges according to measured amplitude on each phase. Operating states: Selectable on or off for each phase system Auto-ranging span: Wide/Narrow (common to all wiring systems)		
Timing control function	Interval OFF/50 ms/100 ms/200 ms/500 ms/1 s/5 s/10 s/ 15 s/30 s/1 min/5 min/10 min/15 min/30 min/60 min Setting determines the maximum data-saving capacity Timing controls OFF/Timer/RTC Timer : 10 s to 9999:59:59 [h:m:s] (in seconds) Real-time clock: Start and stop times (in minutes)		
Hold function	Stops all updating of displayed measurement values and waveforms, and holds display. Internal calculations such as integration and averaging, clock, and peak-over display continue to be updated.		
Peak hold function	All measurement values are updated to display the maximum value for each measurement. Displayed waveforms and integration values continue to be updated with instantaneous values.		

-2. Calculation Functions

Scaling calculation	VT(PT) ratio and CT ratio: OFF/0.01 to 9999.99	
Average calculation	OFF/FAST/MID/SLOW/SLOW2/SLOW3 Exponentially averages all instantaneous measurement values including harmonics (but not peak, integration, or FFT noise values). Applied to displayed values and saved data. Response speed (time remains within specified accuracy when input changes from 0 to 100% f.s.) FAST: 0.2 s, MID: 1.0 s, SLOW: 5 s, SLOW2: 25 s, SLOW3: 100 s	
Efficiency and loss calculations	$ \begin{tabular}{ll} Efficiency η %] and Loss [W] are calculated from active power values measured on each phase and system. \\ For PW3390-03, motor power (Pm) is also applied as a calculation item. \\ Maximum no. of simultaneous calculations: Efficiency and loss, by three formulas (Parameters are specified for Pin and Pout) \\ Calculation method: Efficiency η = 100 \times IPoutl/IPinl \\ Loss = IPinI - IPoutl \\ \end{tabular} $	
Δ-Y calculation	For 3P3W3M systems, converts between line-to-line voltage and phase voltage waveforms using a virtual center point. All voltage parameters including harmonics such as true rms voltage are calculated as phase voltage waveforms. U1s = (U1s-U3s)/3, U2s = (U2s-U1s)/3, U3s = (U3s-U2s)/3	
Selecting the calculation method	TYPE1/TYPE2 (only valid when wiring is 3P3W3M) Select the calculation method used to calculate the apparent power and reactive power during 3P3W3M wiring. Only affect measurement values S123, Q123, ф123, λ123	
Current sensor phase correction calculations	Compensation by calculating the current sensor's harmonic phase characteristics Correction points are set using frequency and phase difference (set separately for each wiring mode). Frequency: 0.001 kHz to 999.999 kHz (in 0.001 kHz increments) Phase difference: 0.00 °. to ±90.00 °. (in 0.01 °. increments) However, the time difference calculated from the frequency phase difference is limited to a maximum of 200 us in 5 ns increments.	
-3. Display Functions		
Wiring Check screen	The wiring diagram and voltage/current vectors are displayed for the selected wiring system(s).	

	wiring system(s). The correct range for t confirm proper measu			on the vector	display, to
Independent wiring system display mode	Displays power and harmonic measurement values for channels 1 to 4. A composite measurement line pattern is displayed for each system. Basic, voltage, current, and power measurement parameter, harmonic bar graph, harmonic list, and harmonic vector screens				
Display Selections screen	Select to display any 4 Display layout: 4, 8, 16				arameters.
Efficiency and Loss screen	The efficiency and loss obtained by the specified calculation formulas are displayed numerically. Three efficiency and three loss values.				
Waveform & Voltage and current waveforms sampled at 500 kHz and no are displayed compressed on one screen. Trigger: Synchronized with the harmonic sync source Recording length: 1000/5000/10,000/50,000 x All voltage a Compression ratio: 1/1, 1/2, 1/5, 1/10, 1/20, 1/50 (peak-to-pe Recording time:			irce voltage and c	urrent channel	
	Recording speed/ Recording length	1000	5000	10,000	50,000
	500 kS/s	2 ms	10 ms	20 ms	100 ms
	250 kS/s	4 ms	20 ms	40 ms	200 ms
	100 kS/s	10 ms	50 ms	100 ms	500 ms
	50 kS/s	20 ms	100 ms	200 ms	1000 ms
	25 kS/s	40 ms	200 ms	400 ms	2000 ms
	10 kS/s	100 ms	500 ms	1000 ms	5000 ms

Trend screen	Display a time-sequence graph of measured values for basic measurement parameters that have been selected as trend display parameters. Waveforms are graphed using peak-peak compression of data refresh rate data based on the time axis setting. Data is not stored. Number of graphed parameters: Up to 8 Time axis: 1.5/3/6/12/30 s/div; 1/3/6/10/30 min./div.; 1/3/6/12 hour/div; 1 day/div. Vertical axis: Auto (configured so that the data in the screen display range fits on the screen) / semi-auto (user selects the zoom factor relative to the full-scale values for graphed parameters from the following: 1/8, 1/4, 1/2, x1, x2, x5, x10, x50, x100, x200, x500) / manual (user sets the maximum and minimum values for the display)
X-Y Plot screen	Select horizontal and vertical axes from the basic measurement items to display on the X-Y graphs. Dots are plotted at the data update interval, and are not saved. Drawing data can be cleared. Horizontal: 1 data item (gauge display available), Vertical: 2 data items (gauge display available)

-4. Saving Functions

-4. Saving Functions			
Auto-save function	As the items to be saved, select any measured values including harmonics and noise value data of the FFT function. The selected items are stored to CF card during every measurement interval. (Storage to USB memory is not available.) Can be controlled by timer or real-time clock. Max. no. of saved items: Interval-setting-dependent Data format: CSV format		
Manual saving function	Save destinations: USB memory/CF card		
	Measurement data As the items to be saved, select any measured values including harmonics and noise value data of the FFT function. Pressing the SAVE key saves each measurement value at that moment to the save destination. File format: CSV format Screen capture The COPY key captures and saves a bitmap image of the display to the save destination. *This function can be used at an interval of 5 sec or more while automatic saving is in progress. File format: Compressed BMP format Settings data Settings information can be saved/loaded as a settings file. File format: SET format (for PW3390 only) *Waveform data Saves the waveform being displayed by means of [Wave/Noise] display. File format: CSV format *FFT data Save the noise measurement FFT spectrum shown on the Waveform/Noise screen. File format: CSV format		

-5. Synchronous Control Function

Function	Synchronous measurements are available by using sync cables to connect Model PW3390 (master/slave).
	When internal settings match, auto-save is available while synchronized.
Synchronized items	Clock, data update interval (except for FFT calculations), integration start/stop, data reset, certain events
Event items	Hold, manual save, screen capture
Synchronization timing	Clock, data update interval Within 10 s after power-on by a slave PW3390 Start/stop, data reset, event Upon key-press and communications operations on the master PW3390
Synchronization delay	Maximum 5 μs per connection. Maximum synchronization delay of an event is +50 ms
0 DI 1 11 0 I	•

-6. Bluetooth® Logger Connectivity

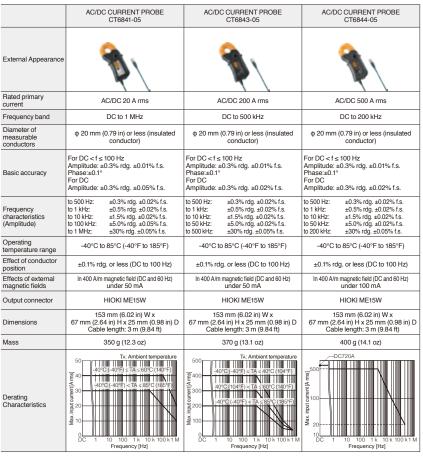
	Sends measured values wirelessly to logger by using a Bluetooth® serial conversion adapter.	
Supported devices	Hioki LR8410 Link-compatible loggers (LR8410, LR8416)	
Sent data	Measured values assigned to the D/A CH9 to CH16 analog output parameters	

-7. Other Functions

Display language selection	Japanese, English, Chinese
Beep sound	OFF/ON
Screen color schemes	COLOR1 (black)/2 (blue-green)/3 (blue)/4 (gray)/5 (navy blue)
Start-up screen selection	Wiring or Last-displayed screen (Measurement screens only)
LCD backlight	ON/1 min/5 min/10 min/30 min/60 min
CSV file format	CSV/SSV
Real-time clock function	Auto-calendar, leap-year correcting 24-hour clock
RTC accuracy	±3 s per day @25°C (77°F)
Sensor recognition	Current sensors are automatically recognized when connected (Excluding the CT7000 series sensors)
Warning indicators	When peak over occurs on voltage and current measurement channels, When no sync source is detected Warning indicators for all channels are displayed on all pages of the MEAS screen.
Key-lock	Toggles on/off by holding the ESC key for three seconds.
System reset	Returns all settings to factory defaults
Power-on reset	Returns all settings including language and communications settings, to factory defaults.
File operations	Media content list display, format media, create folders, delete files and folders, copy between storage media

General Specifications

Operating environment	Indoors, Pollution Degree 2, altitude up to 2000 m (6562.20 ft)		
Operating temperature	Temperature: 0°C to 40°C (32°F to 104°F), Humidity: 80% RH or less		
and humidity	(no condensation)		
Storage temperature and humidity	-10°C to 50°C (14°F to 122°F), 80% RH or less (no condensation)		
Dustproof and waterproof	IP30 (EN 60529) (With CF card cover open: IP20)		
Applicable standards	Safety EN 61010		
	EMC EN 61326 Class A		
Power supply	100 V to 240 V AC, 50 Hz/60 Hz, Maximum rated power: 140 VA		
	Anticipated transient overvoltage: 2500 V		
Backup battery life	Clock, settings and integration values (Lithium battery), Approx. 10 years, @23°C (73°F)		
Dimensions	340 mm (13.39 in) W × 170 mm (6.69 in) H × 156 mm (6.14 in) D (excluding protrusions)		
Mass	4.6 kg (162.3 oz) with PW3390-03		
Product warranty period	3 year		
Accessories	Instruction Manual ×1, Measurement Guide ×1, Power cord ×1, USB cable (0.9 m (2.95 ft)) ×1, Input cord label ×2, D-sub connector ×1 (PW3390-02, PW3390-03)		


High Accuracy Sensor, Pass-Through Type

	AC/DC CURRENT SENSOR CT6862-05	AC/DC CURRENT SENSOR CT6863-05	AC/DC CURRENT SENSOR 9709-05	AC/DC CURRENT SENSOR CT6904
External Appearance				NEW Wideband 4 MHz
Rated primary current	AC/DC 50 A rms	AC/DC 200 A rms	AC/DC 500 A rms	AC/DC 500 A rms
Frequency band	DC to 1 MHz	DC to 500 kHz	DC to 100 kHz	DC to 4 MHz
Diameter of measurable conductors	φ 24 mm (0.94 in) or less	ф 24 mm (0.94 in) or less	ф 36 mm (1.42 in) or less	φ 32 mm (1.26 in) or less
Basic accuracy	For DC, 16 Hz to 400 Hz Amplitude: ±0.05% rdg. ±0.01% f.s. Phase: ±0.2° * No DC specifications	For DC, 16 Hz to 400 Hz Amplitude: ±0.05% rdg. ±0.01% f.s. Phase: ±0.2° * No DC specifications	For DC, 45 Hz to 66 Hz Amplitude: ±0.05% rdg. ±0.01% f.s. Phase: ±0.2° * No DC specifications	For 45 Hz to 65 Hz Amplitude: ±0.02% rdg. ±0.007% f.s. Phase: ±0.05° For DC Amplitude: ±0.025% rdg. ±0.007% f.s.
Frequency characteristics (Amplitude)	to 50 kHz: ±1.0% rdg. ±0.02% f.s. to 100 kHz: ±2.0% rdg. ±0.05% f.s.	10 16 Hz:	10 45 Hz:	to 16 Hz: ±0.2% rdg. ±0.02% f.s. 65 Hz to 850 Hz: ±0.05% rdg. ±0.007% f.s. to 10 kHz: ±0.4% rdg. ±0.007% f.s. to 300 kHz: ±2.0% rdg. ±0.05% f.s. to 1 MHz: ±5.0% rdg. ±0.05% f.s. 4 MHz: ±30B Typical
Operating temperature range	-30°C to 85°C (-22°F to 185°F)	-30°C to 85°C (-22°F to 185°F)	0°C to 50°C (32°F to 122°F)	-10°C to 50°C (14°F to 122°F)
Effect of conductor position	±0.01% rdg. or less (DC to 100 Hz)	±0.01% rdg. or less (DC to 100 Hz)	±0.05% rdg. or less (DC)	±0.01% rdg. or less (100 A input, 50/60 Hz)
Effects of external magnetic fields	In 400 A/m magnetic field (DC and 60 Hz) 10 mA or less	In 400 A/m magnetic field (DC and 60 Hz) 50 mA or less	In 400 A/m magnetic field (DC and 60 Hz) 50 mA or less	In 400 A/m magnetic field (DC and 60 Hz) 50 mA or less
Maximum rated voltage to ground	CAT III 1000 V	CAT III 1000 V	CAT III 1000 V	CAT III 1000 V
Output connector	HIOKI ME15W	HIOKI ME15W	HIOKI ME15W	HIOKI ME15W
Dimensions	70 mm (2.76 in) W x 100 mm (3.94 in) H x 53 mm (2.09 in) D, Cable length: 3 m (9.84 ft)	70 mm (2.76 in) W x 100 mm (3.94 in) H x 53 mm (2.09 in) D, Cable length: 3 m (9.84 ft)	160 mm (6.30 in) W x 112 mm (4.41 in) H x 50 mm (1.97 in) D, Cable length: 3 m (9.84 ft)	139 mm (5.47 in) W x 120 mm (4.72 in) H x 52 mm (2.05 in) D, Cable length: 3 m (9.84 ft)
Mass	Approx. 340 g (12.0 oz)	Approx. 350 g (12.3 oz)	Approx. 850 g (30.0 oz)	Approx. 1.0 kg (35.3 oz)
Derating Characteristics	800 5 80 10 10 10 1 10 10 10 10 10 10 10 10 10 10	E 400 V 1 300 10 200 0 10 10 10 10 10 10 10 10 10 10 10 10 10	E 500	Ta: Ambient temperature 1000 1000 1000 1000 1000 1000 1000 1

Custom cable lengths also available. Please inquire with your Hioki distributor.

High Accuracy Sensor, Clamp Type

	AC/DC CURRENT SENSOR CT6865-05	
External Appearance		
Rated primary current	AC/DC 1000 A rms	
Frequency band	DC to 20 kHz	
Diameter of measurable conductors	ф 36 mm (1.42 in) or less	
Basic accuracy	For DC, 16 Hz to 66 Hz Amplitude: ±0.05% rdg. ±0.01% f.s. Phase: ±0.2° * No DC specifications	
Frequency characteristics (Amplitude)	to 16 Hz: ±0.1% rdg. ±0.02% f.s. 66 Hz to 100 Hz: ±0.5% rdg. ±0.02% f.s. to 500 Hz: ±1.0% rdg. ±0.02% f.s. to 5 kHz: ±5.0% rdg. ±0.05% f.s. to 20 kHz: ±30% rdg. ±0.1% f.s.	
Operating temperature range	-30°C to 85°C (-22°F to 185°F)	
Effect of conductor position	±0.05% rdg. or less (50/60 Hz)	
Effects of external magnetic fields	In 400 A/m magnetic field (DC and 60 Hz) 200 mA or less	
Maximum rated voltage to ground	CAT III 1000 V	
Output connector	HIOKI ME15W	
Dimensions	160 mm (6.30 in) W x 112 mm (4.41 in) H x 50 mm (1.97 in) D, Cable length: 3 m (9.84 ft)	
Mass	Approx. 980 g (34.6 oz)	
Derating Characteristics	8 1200 W 1000 W 200 DC 1 10 100 1k 10k100k Frequency [Hz]	

High Accuracy Sensor, Clamp Type

AC/DC CURRENT PROBE CT6845-05 AC/DC CURRENT PROBE CT6846-05 CLAMP ON SENSOR 9272-05 External Appearance Rated primary AC/DC 500 A rms AC/DC 1000 A rms AC 200 A rms/20 A rms switching Frequency band DC to 100 kHz Diameter of φ 50 mm (1.97 in) or less (insulated conductor) φ 50 mm (1.97 in) or less (insulated conductor) Φ 46 mm (1.81 in) or less conductors For DC < f ≤ 100 Hz Amplitude: ±0.3% rdg. ±0.01% f.s. Phase:±0.1° For DC Amplitude: ±0.3% rdg. ±0.02% f.s. For DC < f ≤ 100 Hz Amplitude: ±0.3% rdg. ±0.01% f.s. Phase:±0.1° For DC Amplitude: ±0.3% rdg. ±0.02% f.s. For 45 Hz to 66 Hz Amplitude: $\pm 0.3\%$ rdg. $\pm 0.01\%$ f.s. Phase: ± 0.2 $^{\circ}$ ±2.0% rdg. ±0.10% f.s. ±0.5% rdg. ±0.02% f.s. ±2.5% rdg. ±0.02% f.s. ±5% rdg. ±0.1% f.s. ±30% rdg. ±0.1% f.s. ±0.5% rdg. ±0.02% f.s. ±1.0% rdg. ±0.02% f.s. ±2.0% rdg. ±0.02% f.s. ±5.0% rdg. ±0.05% f.s. to 500 Hz: to 1 kHz: ±0.3% rdg. ±0.02% f.s. ±0.5% rdg. ±0.02% f.s. to 500 Hz: to 1 kHz: to 10 Hz: to 45 Hz: Frequency characteristics (Amplitude) ±1.5% rdg. ±0.02% f.s. ±5.0% rdg. ±0.02% f.s. ±30% rdg. ±0.05% f.s. to 10 kHz: to 20 kHz: to 5 kHz: to 10 kHz: 66 to 10 kHz: to 50 kHz: ±30% rdg. ±0.10% f.s. to 100 kHz: to 20 kHz: to 100 kHz: Operating temperature range -40°C to 85°C (-40°F to 185°F) -40°C to 85°C (-40°F to 185°F) 0°C to 50°C (32°F to 122°F) Effect of conductor ±0.2% rdg. or less (DC to 100 Hz) ±0.2% rdg. or less (50 Hz/60 Hz) ±0.2% rdg. or less (60 Hz) position In 400 A/m magnetic field (60 Hz) under 100 mA Effects of external In 400 A/m magnetic field (DC and 60 Hz) In 400 A/m magnetic field (DC and 60 Hz) magnetic fields under 150 mA under 150 mA HIOKI ME15W HIOKI ME15W HIOKI ME15W Output connector 238 mm (9.37 in) W x 116 mm (4.57 in) H x 35 mm (1.38 in) D Cable length: 3 m (9.84 ft) 238 mm (9.37 in) W x 116 mm (4.57 in) H x 35 mm (1.38 in) D Cable length: 3 m (9.84 ft) 78 mm (3.07 in) W x 188 mm (7.40 in) H x 35 mm (1.38 in) D Cable length: 3 m (9.84 ft) Dimensions 860 g (30.3 oz) 990 g (34.9 oz) 450 g (15.9 oz) C 1.7 kA Ta: Ambient temperature Derating Characteristics 40°C (104°F) -40°C (-40°F) ≤ TA ≤ 60°C (140°F) -40°C (-40°F) ≤ TA ≤ 85°C (185°F) Max ----33 5 (133 1) Frequency [Hz] Frequency [Hz]

External Appearance REAR Summed waveform output (CT9904 connected) Connectable current

Current Summing

FRONT

SENSOR UNIT CT9557

Sensor input

Current sensor with HIOKI ME15W (male) on the output connector DC: to 1 kHz: to 10 kHz: to 100 kHz: to 300 kHz: to 700 kHz: to 1 MHz: ±0.06% rdg, ±0.03% f.s. ±0.06% rdg, ±0.03% f.s. ±0.10% rdg, ±0.03% f.s. ±0.20% rdg, ±0.10% f.s. ±0.20% rdg, ±0.20% f.s. ±5.0% rdg, ±0.20% f.s. ±10.0% rdg, ±0.50% f.s. Summed wavef output accuracy

Operating temperature range -10°C to 50°C (14°F to 122°F)

AC ADAPTER Z1002 (100 to 240 V AC, 50/60 Hz, Max. rated power when in combination with other units: 155 VA) External power supply (10 to 30 V DC, Max. rated power: 60 VA) Power supply HIOKI ME15W (male)*

116 mm (4.57 in) W x 67 mm (2.64 in) H x 132 mm (5.20 in) D External dimensions Mass 420 g (14.8 oz)

AC ADAPTER Z1002, Power cord, Instruction Manual Accessories * CT9904 (sold separately) is required to connect to

Custom cable lengths also available. Please inquire with your Hioki distributor.

High Accuracy Sensor, Direct Wire Type

Newly developed DCCT method allows world-class measurement range and measurement accuracy at a rating of 50 A. (5 A rating version also available. Please inquire with your Hioki distributor.)

	AC/DC CURRENT BOX PW9100-03	AC/DC CURRENT BOX PW9100-04	
External Appearance			
Number of input channels	3ch 4ch		
Rated primary current	AC/DC	50 A rms	
Frequency band	DC to 3.5 N	MHz (-3 dB)	
Measurement terminals	Terminal block (with sa	afety cover), M6 screws	
Basic accuracy	For 45 Hz to 65 Hz Amplitude: ±0.02% rdg. ±0.005% f.s. Phase: ±0.1 ° For DC Amplitude: ±0.02% rdg. ±0.007% f.s.		
Frequency characteristics (Amplitude)	to 45 Hz: ±0.1% rdg. ±0.02% f.s. to 1 kHz: ±0.1% rdg. ±0.01% f.s. to 50 kHz: ±1% rdg. ±0.02% f.s. to 100 kHz: ±2% rdg. ±0.05% f.s. to 1 MHz: ±10% rdg. ±0.05% f.s. 3.5 MHz: -3 dB Typical		
Input resistance	1.5 mΩ or less (50 Hz/60 Hz)		
Operating temperature range	0°C to 40°C (32°F to 104°F)		
Effects of common- mode voltage (CMRR)	50 Hz/60 Hz 120 dB or greater 100 kHz 120 dB or greater (Effect on output voltage/common-mode voltage)		
Maximum rated voltage to ground	1000 V (Measurement category III), 600 V (Measurement category III), Anticipated transient overvoltage 6000 V		
Output connector	HIOKI	ME15W	
Dimensions		3.46 in) H x 260 mm (10.24 in) D, 0.8 m (2.62 ft)	
Mass	3.7 kg (130.5 oz)	4.3 kg (151.7 oz)	
Derating Characteristics	Guaranteed acc	100 kHz/30/A	

Standard Sensor

CT9920 (sold separately) is required to connect PW3390 to the sensor with HIOKI PL14 on the output connector.

Output connector

PW3390.

	AC/DC CURRENT SENSOR CT7642 AC/DC AUTO ZERO CURRENT SENSOR CT7742	AC FLEXIBLE CURRENT SENSOR CT7044, CT7045, CT7046	
External Appearance	3 3		
Rated primary current	AC/DC 2000 A rms	AC 6000 A rms	
Frequency band	CT7642: DC to 10 kHz CT7742: DC to 5 kHz	10 Hz to 50 kHz (±3 dB)	
Diameter of measurable conductors	ф 55 mm (2.17 in) or less	CT7044: φ 100 mm (3.94 in) or less CT7045: φ 180 mm (7.09 in) or less CT7046: φ 254 mm (10.00 in) or less	
Basic accuracy	For DC, 45 Hz to 66 Hz Amplitude: ±1.5% rdg. ±0.5% f.s. For up to 66 Hz Amplitude: ±1.5% rdg. ±0.25% f.s. Phase:±1.0 ° Phase:±1.0 °		
Frequency characteristics (Amplitude)	66 kHz to 1 kHz ±2.5% rdg. ±1.0% f.s.	-	
Operating temperature range	-25°C to 65°C (-13°F to 149°F)	-25°C to 65°C (-13°F to 149°F)	
Effect of conductor position	±1.0% rdg. or less	±3.0% or less	
Effects of external magnetic fields	In 400 A/m magnetic field (DC) 0.2% f.s. or less	In 400 A/m magnetic field (50 Hz/60 Hz) CT7044, CT7045: 1.25% f.s. or less CT7046: 1.5% f.s. or less	
Output connector	HIOKI PL14*	HIOKI PL14*	
Dimensions	64 mm (2.52 in) W x 195 mm (7.68 in) H x 34 mm (1.34 in) D Cable length: 2.5 m (8.20 ft)	Circuit box: 25 mm (0.98 in) W x 72 mm (2.83 in) H x 20 mm (0.79 in) D Cable length: 2.5 m (8.20 ft)	
Mass	510 g (18.0 oz)	CT7044: 160 g (5.6 oz) CT7045: 174 g (6.1 oz) CT7046: 186 g (6.6 oz)	
Derating Characteristics	2.5 k W 2 k W 1 1 k W 1 10 k W 1 10 k W 1 10 k Frequency [Hz]	12 k 10 k 10 k 10 k 10 k 10 k 10 k 10 k 10 k	

Model: POWER ANALYZER PW3390

Model No. (Order Code)	D/A output	Motor analysis
PW3390-01	_	_
PW3390-02	0	_
PW3390-03	0	0

Accessories: Instruction Manual ×1, Measurement Guide ×1, Power cord ×1, USB cable ×1, Input cord label ×2, D-sub 25-pin connector ×1 (PW3390-02, PW3390-03)

- The optional voltage cord and current sensor are required for taking measurements.
- Motor analysis and D/A output cannot be changed or added after delivery

Current Measurement Options

Name (Note)	Model No. (Order Code)
AC/DC CURRENT SENSOR (50 A)	CT6862-05
AC/DC CURRENT SENSOR (200 A)	CT6863-05
AC/DC CURRENT SENSOR (500 A) NEW	CT6904
AC/DC CURRENT SENSOR (500 A)	9709-05
AC/DC CURRENT SENSOR (1000 A)	CT6865-05
AC/DC CURRENT PROBE (20 A)	CT6841-05
AC/DC CURRENT PROBE (200 A)	CT6843-05
AC/DC CURRENT PROBE (500 A, φ 20 mm (0.79 in))	CT6844-05
AC/DC CURRENT PROBE (500 A, φ 50 mm (1.97 in))	CT6845-05
AC/DC CURRENT PROBE (1000 A)	CT6846-05
CLAMP ON SENSOR (AC 20 A/200 A)	9272-05
AC/DC CURRENT BOX (50 A, 3 ch)	PW9100-03
AC/DC CURRENT BOX (50 A, 4 ch)	PW9100-04
AC/DC AUTO ZERO CURRENT SENSOR (2000 A)	CT7742 *
AC/DC CURRENT SENSOR (2000 A)	CT7642 *
AC FLEXIBLE CURRENT SENSOR (6000 A, ϕ 100 mm (3.94 in))	CT7044 *
AC FLEXIBLE CURRENT SENSOR (6000 A, ϕ 180 mm (7.09 in))	CT7045 *
AC FLEXIBLE CURRENT SENSOR (6000 A, φ 254 mm (10.00 in))	CT7046 *
SENSOR UNIT (Sensor power supply with 4 channel summing function)	CT9557 **

- * CONVERSION CABLE CT9920 is required to connect to PW3390.
- ** CONNECTION CABLE CT9904 is required to connect to PW3390.

CONVERSION CABLE CT9900

Required to connect PW3390 to the current sensor with HIOKI PL23 on the output connector.

[Applicable products] CT6841, CT6843, CT6844, CT6845, CT6846, CT6862, CT6863, 9709, CT6865, 9272-10

CONVERSION CABLE CT9920

Required to connect PW3390 to the current sensor with HIOKI PL14 on the output connector.

[Applicable products] CT7742, CT7642, CT7044, CT7045, CT7046

CONNECTION CABLE CT9904

Cable length: 1 m (3.28 ft) Required to connect the summing waveform output terminal of CT9557 to PW3390.

[Applicable products] CT9557

Built-To-Order (Current Measurement)

PW9100 5A-rated model

9709-05 high-accuracy model CT6862-05 high-accuracy model

distributor or subsidiary for more information. CT6863-05 high-accuracy model

AC/DC 2000 A high accuracy sensor, pass-through type

Voltage Measurement Options

VOLTAGE CORD L9438-50

Red, black: 1 each 1000 V specification, Cord length: 3 m (9.84 ft) CAT IV 600 V, CAT III 1000 V

VOLTAGE CORD L1000

Red, yellow, blue, gray: 1 each; Black: 4 1000 V specification, Cord length: 3 m (9.84 ft) CAT IV 600 V, CAT III 1000 V

WIRING ADAPTER PW9000

CONNECTION CORD L9217

CONNECTION CABLE 9683

Connection Options

When making a 3-phase 3-wire (3P3W3M) connection, this product allows you to reduce the number of voltage cords from 6 to 3.

For motor analysis input

Cable length: 1.6 m (5.25 ft)

For synchronous measurement, Cable length: 1.5 m (4.92 ft)

EXTENSION CABLE SET L4931

Red, black: 1 each, With connector, Cable length: 1.5 m (4.92 ft) For extension of L9438-50 or L1000 CAT IV 600 V, CAT III 1000 V

GRABBER CLIP 9243

Red. black: 1 each Change the tip of the voltage cord to use CAT III 1000 V

WIRING ADAPTER PW9001

LAN CABLE 9642

conversion connector.

Supplied with straight to cross

Cable length: 5 m (16.41 ft)

RS-232C CABLE 9637

9pin-9pin cross Cable length: 1.8 m (5.91 ft)

When making a 3-phase 4-wire (3P4W) connection, this product allows you to reduce the number of voltage cords from 6 to 4.

Built-To-Order (Other)

MAN V

D/A output cable

D-sub 25-pin - BNC (male)

PATCH CORD L1021-01

Banana branch-banana, Red: 1 Cable length: 0.5 m For branching from the L9438-50 or CAT IV 600 V, CAT III 1000 V

Please contact your Hioki

PATCH CORD L1021-02

Banana branch-banana, Black: 1 Cable length: 0.5 m For branching from the L9438-50 or CAT IV 600 V. CAT III 1000 V

Other Options -

PC CARD 512 MB 9728 PC CARD 1 GB 9729 PC CARD 2 GB 9830

Use only PC Cards sold by HIOKI. Compatibility and performance are not guaranteed for PC cards made by other manufacturers. You may be unable to read from or save data to such cards.

CARRYING CASE 9794

Carrying Case for PW3390 and 3390 448 mm (17.64 in) W x 618 mm (24.33 in) H

x 295 mm (11.61 in) D

16 ch conversion, Cord length: For EIA or JIS 2.5 m (8.20 ft)

Rackmount fittings

Please contact your Hioki distributor or subsidiary for more information

The Bluetooth word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by HIOKI E.E. CORPORATION is under license. Note: Company names and Product names appearing in this catalog are trademarks or registered trademarks of various companies.

DISTRIBUTED BY

HIOKI E.E. CORPORATION

HEADQUARTERS

81 Koizumi Ueda, Nagano 386-1192 Japan www.hioki.com

HIOKI USA CORPORATION

TEL +1-609-409-9109 FAX +1-609-409-9108 hioki@hiokiusa.com / www.hiokiusa.com

HIOKI (Shanghai) SALES & TRADING CO., LTD. TEL +86-21-6391-0090/0092 FAX +86-21-6391-0360

info@hioki.com.cn / www.hioki.cn

HIOKI SINGAPORE PTE.LTD. TEL +65-6634-7677 FAX +65-6634-7477 info-sg@hioki.com.sg / www.hioki.com.sg

HIOKI KOREA CO., LTD.

TEL +82-2-2183-8847 FAX +82-2-2183-3360 info-kr@hioki.co.jp / www.hiokikorea.com

HIOKI EUROPE GmbH

TEL +49-6173-31856-0 FAX +49-6173-31856-25 hioki@hioki.eu / www.hioki.com